洛谷 P5020 【货币系统】
谁说这一定要排序的,这就是个装满背包嘛
\({f[i]}\) 表示 \(i\) 面值最多能被几张钱表示
则若其不能被表示 \(f[i]=-inf\) 能表示且只有它自己则 \(f[i]=1\)
初始化 \(f[0]=0\)
然后就是裸的背包了呀 状态转移方程为 \(f[i]=max(f[i],f[i-money[j]]+1)\)
就这样
撒花~
代码如下
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a[500],n,cnt,q[50000];
int main()
{
freopen("money.in","r",stdin);
freopen("money.out","w",stdout);
int T;
scanf("%d",&T);
for(int _=1;_<=T;_++)
{
memset(q,-63,sizeof q);
int ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
q[0]=0;
for(int i=1;i<=n;i++)
for(int j=a[i];j<=30000;j++)
q[j]=max(q[j],q[j-a[i]]+1);
for(int i=1;i<=n;i++)
if(q[a[i]]==1) ans++;
printf("%d\n",ans);
}
return 0;
}
洛谷 P5020 【货币系统】的更多相关文章
- 洛谷 P5020 货币系统
题目描述 在网友的国度中共有$ n $种不同面额的货币,第 i种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为\(n\).面额数组为 \(a[1..n]\ ...
- NOIp2018 TG day1 T2暨洛谷P5020 货币系统:题解
题目链接:https://www.luogu.org/problemnew/show/P5020 这道题感觉比较水啊,身为普及组蒟蒻都不费力的做出来了,而且数据范围应该还能大一些,n起码几万几十万都不 ...
- 洛谷P5020 货币系统
题目 题意简化一下就是找题目给定的n个数最多能消掉多少个,我们用个tong[i]来记录i这个数值能不能用小于等于i的货币组合起来,等于1意味着他只能由自己本身的货币组成,等于2说明他可以被其他货币组成 ...
- 洛谷P5020 货币系统 题解 模拟
题目链接:https://www.luogu.org/problem/P5020 这道题目是一道模拟题,但是又有一点多重背包的思想在里面. 首先我们定义一个 vis[i] 来表示和为 i 的情况在之前 ...
- 洛谷 p5020 货币系统 题解
传送门 一个手动枚举能过一半点而且基本靠数学的题目(然而我考试的时候只有25分) 读清题目后发现就是凑数嘛,.... 对啊,就是凑数,怎么凑是重点啊.. 于是就绝望了一小时手动枚举n从1到5的情况 吐 ...
- 洛谷P5020货币系统
题目 这个题打眼看上去可能是一个数论或者DP,其实我们可以简化一下题意,即 给定一个集合\(\alpha\),找到几个数使得这几个数可以拼凑起来这个集合里所有的数,且需要使这些数的个数最小. 这样这个 ...
- noip2018 洛谷 P5020 货币系统
关键: 要使m最小,(m,b)中的数不能用(n,a)中的数表示出来 对于 3 19 10 6 19=10+3+3+3 6=3+3 只有3 和 10 不能被(n,a)中的数表示 所以m=2 只需要 ...
- 洛谷P1474 货币系统 Money Systems
P1474 货币系统 Money Systems 250通过 553提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 母牛们不但创 ...
- 洛谷 P1474 货币系统 Money Systems(经典)【完全背包】+【恰好装满的最大方案数量】
题目链接:https://www.luogu.org/problemnew/show/P1474 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对 ...
- 洛谷 P1474 货币系统 Money Systems
P1474 货币系统 Money Systems !! 不是noip2018的那道题. 简单的多重背包的变式. #include <iostream> #include <cstdi ...
随机推荐
- 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'
ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...
- window端编码到Linux允许脚本 笔记
昨天升级一个服务,发现没有现成的启动脚本.就随手写了一个,一运行发现不行.竟然报错说找不到文件,No such file or directory [nohup: cannot run command ...
- scroll滚动条样式修改
一般我们有两种情况会出现滚动条,一种是overflow,一种是使用scroll. 当我们需要改变这个滚动条样式的时候,我们需要做以下的修改: html: <div id="style- ...
- Decoder is not a @Sharable handler, so can't be added or removed multiple times
Decoder is not a @Sharable handler, so can't be added or removed multiple times final MyMessageDecod ...
- Python魔法方法(magic method)细解几个常用魔法方法(上)
这里只分析几个可能会常用到的魔法方法,像__new__这种不常用的,用来做元类初始化的或者是__init__这种初始化使用的 每个人都会用的就不介绍了. 其实每个魔法方法都是在对内建方法的重写,和做像 ...
- windows 10 screenshot keyboard shortcut
windows 10 screenshot keyboard shortcut Win + Shfit + S https://www.cnet.com/how-to/8-ways-to-take-s ...
- Java ME之Android开发从入门到精通
1. 搭建Android开发环境 方式一:使用ADT插件安装 ADT插件的下载与安装,ADT插件获取网址:http://www.androiddevtools.cn/ 下载好的ADT插件如图所示: 在 ...
- Java 获取客户端ip返回127.0.0.1问题
Java开发中使用 request.getRemoteAddr 获取客户端 ip ,返回结果始终为127.0.0.1.原因是服务器使用了nginx反向代理. 解决办法:在nginx配置文件nginx. ...
- Vue命令行工具vue-cli
前面的话 Vue.js 提供一个官方命令行工具,可用于快速搭建大型单页应用.该工具提供开箱即用的构建工具配置,带来现代化的前端开发流程.只需几分钟即可创建并启动一个带热重载.保存时静态检查以及可用于生 ...
- 共轭函数Fenchel不等式
f(x)不一定是凸函数,但他的共轭函数一定是凸函数.是仿射函数的逐点上确界. Fenchel不等式 f(x)+f*(x)>=xTy 如