哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率。在Java的Object类中有一个方法:

public native int hashCode();

  根据这个方法的声明可知,该方法返回一个int类型的数值,并且是本地方法,因此在Object类中并没有给出具体的实现。

  为何Object类需要这样一个方法?它有什么作用呢?今天我们就来具体探讨一下hashCode方法。

一、hashCode方法的作用

  对于包含容器的程序设计语言来说,基本上都会涉及到hashCode。在Java中也一样,hashCode方法的主要作用是为了配合基于散列的集合一起正常运行,这样的散列集合包括HashSet、HashMap以及HashTable。

  为什么这么说呢?考虑一种情况,当向集合中插入对象时,如何判别在集合中是否已经存在该对象了?(注意:集合中不允许重复的元素存在

  也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法逐一比较,效率必然是一个问题。此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值,如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了(跳过for循环,执行addEntry());如果存在该hashcode值,就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列到其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了,说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址、对象的字段等)映射成一个数值,这个数值称为散列值。下面这段代码是java.util.HashMap中的put方法的具体实现:

 public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
} modCount++;
addEntry(hash, key, value, i);
return null;
}

  put方法是用来向HashMap中添加新的元素,从put方法的具体实现可知,会先调用hashCode方法得到该元素的hashcode值,然后查看table中是否存在该hashcode值,如果存在,再调用equals方法重新确定是否存在该元素,如果存在,则更新value值,否则将新的元素添加到HashMap中。从这里可以看出,hashCode方法的存在是为了减少equals方法的调用次数,从而提高程序效率

  有些朋友误以为默认情况下,hashCode返回的就是对象的存储地址,事实上这种看法是不全面的,确实有些JVM在实现时是直接返回对象的存储地址,但是大多时候并不是这样,只能说可能和存储地址有一定关联。下面是HotSpot JVM中生成hash散列值的实现:

 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
// This form uses an unguarded global Park-Miller RNG,
// so it's possible for two threads to race and generate the same RNG.
// On MP system we'll have lots of RW access to a global, so the
// mechanism induces lots of coherency traffic.
value = os::random() ;
} else
if (hashCode == 1) {
// This variation has the property of being stable (idempotent)
// between STW operations. This can be useful in some of the 1-0
// synchronization schemes.
intptr_t addrBits = intptr_t(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = intptr_t(obj) ;
} else {
// Marsaglia's xor-shift scheme with thread-specific state
// This is probably the best overall implementation -- we'll
// likely make this the default in future releases.
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
} value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}

  该实现位于hotspot/src/share/vm/runtime/synchronizer.cpp文件下。

  因此有人会说,可以直接根据hashcode值判断两个对象是否相等吗?肯定是不可以的,因为不同的对象可能会生成相同的hashcode值。虽然不能根据hashcode值判断两个对象是否相等,但是可以直接根据hashcode值判断两个对象不等,如果两个对象的hashcode值不等,则必定是两个不同的对象。如果要判断两个对象是否真正相等,必须通过equals方法

  也就是说对于两个对象,如果调用equals方法得到的结果为true,则两个对象的hashcode值必定相等;

  如果equals方法得到的结果为false,则两个对象的hashcode值不一定不同;

  如果两个对象hashcode值不等,则equals方法得到的结果必定为false;

  如果两个对象的hashcode值相等,则equals方法得到的结果未知。

二、equals方法和hashCode方法

  在有些情况下,程序设计者在设计一个类的时候需要重写equals方法,比如String类,但是千万要注意,在重写equals方法的同时,必须重写hashCode方法。为什么这么说呢?

  下面看一个例子:

 package com.meng.javalanguage.hashcode.test;

 import java.util.HashMap;

 class People {
private String name;
private int age; public People(String name,int age) {
this.name = name;
this.age = age;
} public void setAge(int age) {
this.age = age;
} @Override
public boolean equals(Object obj) {
if(this == obj) {
return true;
} if(obj == null) {
return false;
} if(this.getClass() != obj.getClass()) {
return false;
} People p = (People)obj;
return this.name.equals(p.name) && this.age == p.age;
} } public class Main {
public static void main(String[] args) { People p1 = new People("Jack", 12);
System.out.println(p1.hashCode()); HashMap<People,Integer> hashMap = new HashMap<People, Integer>();
hashMap.put(p1,1); System.out.println(hashMap.get(new People("Jack",12)));
}
}

  在这里只重写了equals方法,也就是说如果两个People对象,如果它的姓名和年龄相等,则认为是同一个人。

  这段代码本来的意愿是输出结果为“1”,但是事实上它输出的是“null”。为什么呢?原因就在于重写equals方法的同时忘记重写hashCode方法

  虽然通过重写equals方法使得逻辑上姓名和年龄相同的两个对象被判定为相等的对象(跟String类类似),但是要知道默认情况下,hashCode方法是将对象的存储地址进行映射。那么上述代码的输出结果为“null”就不足为奇了。原因很简单,p1指向的对象和

System.out.println(hashMap.get(new People("Jack",12)));

这句话中的new People("Jack",12)生成的是两个对象,它们的存储地址肯定不同。下面是HashMap的get方法的具体实现:

 public V get(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}

  所以在hashmap进行get操作时,因为得到的hashcode值不同(注意,上述代码也许在某些情况下会得到相同的hashcode值,不过这种概率比较小,因为虽然两个对象的存储地址不同也有可能得到相同的hashcode值),所以导致在get方法中for循环不会执行,直接返回null。

  因此如果想上述代码输出结果为“1”,很简单,只需要重写hashCode方法,让equals方法和hashCode方法始终在逻辑上保持一致性

 package com.meng.javalanguage.hashcode.test;

 import java.util.HashMap;

 class People {
private String name;
private int age; public People(String name,int age) {
this.name = name;
this.age = age;
} public void setAge(int age) {
this.age = age;
} @Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + age;
result = prime * result + ((name == null) ? 0 : name.hashCode());
return result;
} @Override
public boolean equals(Object obj) {
if(this == obj) {
return true;
} if(obj == null) {
return false;
} if(this.getClass() != obj.getClass()) {
return false;
} People p = (People)obj;
return this.name.equals(p.name) && this.age == p.age;
} } public class Main {
public static void main(String[] args) { People p1 = new People("Jack", 12);
System.out.println(p1.hashCode()); HashMap<People,Integer> hashMap = new HashMap<People, Integer>();
hashMap.put(p1,1); System.out.println(hashMap.get(new People("Jack",12)));
}
}

  输出结果:

  这样一来的话,输出结果就为“1”了。

  下面这段话摘自Effective Java一书:

  • 在程序执行期间,只要equals方法的比较操作用到的信息没有被修改,那么对这同一对象调用多次,hashCode方法必须始终如一地返回同一个整数
  • 如果两个对象根据equals方法比较是相等的,那么调用两个对象的hashCode方法必须返回相同的整数结果。
  • 如果两个对象根据equals方法比较是不等的,则hashCode方法不一定返回不同的整数。

  对于第二条和第三条很好理解,但是第一条,很多时候就会忽略。在《Java编程思想》一书中的P495页也有同第一条类似的一段话:

  “设计hashCode()时最重要的因素就是:无论何时,对同一个对象调用hashCode()都应该产生同样的值。如果在将一个对象用put()添加进HashMap时产生一个hashCdoe值,而用get()取出时却产生了另一个hashCode值,那么就无法获取该对象了。所以如果你的hashCode方法依赖于对象中易变的数据,用户就要当心了,因为此数据发生变化时,hashCode()方法就会生成一个不同的散列码”。

  下面举个例子:

 package com.meng.javalanguage.hashcode.test;

 import java.util.HashMap;

 class People {
private String name;
private int age; public People(String name,int age) {
this.name = name;
this.age = age;
} public void setAge(int age) {
this.age = age;
} @Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + age;
result = prime * result + ((name == null) ? 0 : name.hashCode());
return result;
} @Override
public boolean equals(Object obj) {
if(this == obj) {
return true;
} if(obj == null) {
return false;
} if(this.getClass() != obj.getClass()) {
return false;
} People p = (People)obj;
return this.name.equals(p.name) && this.age == p.age;
} } public class Main {
public static void main(String[] args) { People p1 = new People("Jack", 12);
System.out.println(p1.hashCode()); HashMap<People,Integer> hashMap = new HashMap<People, Integer>();
hashMap.put(p1,1); p1.setAge(13); System.out.println(hashMap.get(p1));
}
}

  输出结果:

  因此,在设计hashCode方法和equals方法的时候,如果对象中的数据易变,则最好在equals方法和hashCode方法中不要依赖于该字段

  

转载自《浅谈Java中的hashcode方法

【转】浅谈Java中的hashcode方法的更多相关文章

  1. 【转】浅谈Java中的hashcode方法(这个demo可以多看看)

    浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native i ...

  2. 浅谈Java中的hashcode方法(转)

    原文链接:http://www.cnblogs.com/dolphin0520/p/3681042.html 浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地 ...

  3. 浅谈Java中的hashcode方法

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: 1 public native int hashCode(); 根据 ...

  4. 浅谈Java中的hashcode方法(转载)

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: 1 public native int hashCode(); 根据 ...

  5. 浅谈Java中的hashcode方法以及equals方法

    哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native int hashCode(); 根据这个 ...

  6. 浅谈Java中set.map.List的区别

    就学习经验,浅谈Java中的Set,List,Map的区别,对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操 ...

  7. Java基础学习总结(29)——浅谈Java中的Set、List、Map的区别

    就学习经验,浅谈Java中的Set,List,Map的区别,对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操 ...

  8. 浅谈Java中的equals和==(转)

    浅谈Java中的equals和== 在初学Java时,可能会经常碰到下面的代码: 1 String str1 = new String("hello"); 2 String str ...

  9. 浅谈Java中的equals和==

    浅谈Java中的equals和== 在初学Java时,可能会经常碰到下面的代码: String str1 = new String("hello"); String str2 = ...

随机推荐

  1. vue报错:/node_modules/babel-loader/lib!./node_modules/vue-loader/lib/selector.js?

    vue项目中报这样的错误:./node_modules/babel-loader/lib!./node_modules/vue-loader/lib/selector.js? 大部分是因为文件的路径有 ...

  2. linux 下安装ftp 并远程连接

    1.确认是否已安装 ftp 1 pgrep vsftpd   #查看ftp 服务进程 无结果如下图所示 2.执行安装 1 yum install vsftpd     #安装ftp 服务 3.执行过程 ...

  3. sqlalchemy数据库分层操作

    在学习sqlalchemy操作中,最常见的就是如下的示例,一个文件基本上包含了数据库的增删改查.sqlalchemy的具体操作我就不再详细说明了.流程大概是: 定义表 创建数据库引擎 创建表 插入数据 ...

  4. 06-查询操作(DQL)-单表查询

    一. 综述   查询操作主要从两个方面来说:单表查询和多表查询. 单表查询包括:简单查询.过滤查询.结果排序.分页查询.聚集函数. 二 . 案例设计   1. 设计产品表(product).包括:主键 ...

  5. AAndroid Studio的\drawable还是mipmap

    图片应该放在drawable文件夹下,而mipmap文件夹只适合放app icons

  6. linux关闭防火墙及开放端口

    1) 重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 2) 即时生效,重启后失效 开启: service iptables sta ...

  7. Burpsuite之Burp Collaborator模块介绍

    Burp Collaborator.是从Burp suite v1.6.15版本添加的新功能,它几乎是一种全新的渗透测试方法.Burp Collaborator.会渐渐支持blind XSS,SSRF ...

  8. 【LeetCode】108. Convert Sorted Array to Binary Search Tree

    Problem: Given an array where elements are sorted in ascending order, convert it to a height balance ...

  9. ROIAlign, ROIPooling及ROIWarp对比

    RoI Pooling 实现从原图ROI区域映射到卷积区域最后pooling到固定大小的功能,然后通过池化把该区域的尺寸归一化成卷积网络输入的尺寸. ROIAlign 上面RoI Pooling从原图 ...

  10. Java SE之调整JVM内存笔记

    [文档整理系列]  Java SE之调整JVM内存笔记 一般JVM内存限制是64Mbyte Eclipse下 Run as configrationArguments选项:-Xmx80m [设置虚拟机 ...