【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
Solution
- 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理。
- 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这个时候我们可以根据霍尔定理得出满足人人有鞋子穿的时候的式子是
令\(sum[i]\)表示穿\(i\)号鞋子的人数
\]
我们把这个式子整理下:
\]
- 我们会发现右边是一个常量,那么这个式子就等价与左边的最大值小于等右边即满足,否则不满足
- 所以我们就只需要找出\(1\rightarrow n\)中最大连续子序列。
New Knowledge
- 最大连续子序列用线段树来维护,重难点在\(update\)
- 向上更新
void update(int now,int nl,int nr){
node[now].sum=node[ls(now)].sum+node[rs(now)].sum;
node[now].lmax=max(node[ls(now)].lmax,node[ls(now)].sum+node[rs(now)].lmax);
node[now].rmax=max(node[rs(now)].rmax,node[ls(now)].rmax+node[rs(now)].sum);
node[now].maxx=max( node[ls(now)].rmax+node[rs(now)].lmax ,
max( node[ls(now)].maxx , node[rs(now)].maxx) );return;
}
Code
//It is coded by ning_mew on 7.18
#include<bits/stdc++.h>
#define ls(x) (x*2)
#define rs(x) (x*2+1)
#define LL long long
using namespace std;
const int maxn=2e5+7;
int n,m,d;LL k;
struct Node{LL lmax,rmax,maxx,sum;}node[maxn*4];
void update(int now,int nl,int nr){
node[now].sum=node[ls(now)].sum+node[rs(now)].sum;
node[now].lmax=max(node[ls(now)].lmax,node[ls(now)].sum+node[rs(now)].lmax);
node[now].rmax=max(node[rs(now)].rmax,node[ls(now)].rmax+node[rs(now)].sum);
node[now].maxx=max( node[ls(now)].rmax+node[rs(now)].lmax , max( node[ls(now)].maxx , node[rs(now)].maxx) );return;
}
void build(int now,int nl,int nr){
if(nl==nr){node[now].sum=node[now].maxx=node[now].lmax=node[now].rmax=-k;return;}
int mid=(nl+nr)/2;
build(ls(now),nl,mid);build(rs(now),mid+1,nr);
update(now,nl,nr);
}
void add(int now,int nl,int nr,int pl,LL ad){
if(nl==nr&&nr==pl){
LL box=node[now].sum+ad; node[now].sum=box;node[now].maxx=box;node[now].lmax=box;node[now].rmax=box; return;
} if(nr<pl||pl<nl)return;
int mid=(nl+nr)/2;
add(ls(now),nl,mid,pl,ad);add(rs(now),mid+1,nr,pl,ad);
update(now,nl,nr);
}
int main(){
scanf("%d%d%lld%d",&n,&m,&k,&d);
build(1,1,n);
for(int i=1;i<=m;i++){
int r;LL x;scanf("%d%lld",&r,&x);
add(1,1,n,r,x);//cout<<node[1].maxx<<endl;
if(node[1].maxx>d*k)printf("NIE\n");else printf("TAK\n");
}return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!
【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)的更多相关文章
- BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
- bzoj 1135 [POI2009]Lyz 线段树+hall定理
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 573 Solved: 280[Submit][Status][ ...
- 【BZOJ1135】[POI2009]Lyz 线段树
[BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...
- 【题解】 bzoj3693: 圆桌会议 (线段树+霍尔定理)
bzoj3693 Solution: 显然我们可以把人和位置抽象成点,就成了一个二分图,然后就可以用霍尔定理判断是否能有解 一开始我随便YY了一个\(check\)的方法:就是每次向后一组,我们就把那 ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
- BZOJ1135: [POI2009]Lyz
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 264 Solved: 106[Submit][Status] ...
- 【BZOJ2138】stone(线段树+hall定理)
传送门 题意: 现在有\(n\)堆石子,每堆石子有\(a_i\)个. 之后会有\(m\)次,每次选择\([l,r]\)的石子堆中的石子扔\(k\)个,若不足,则尽量扔. 现在输出\(1\)~\(m\) ...
- 一码学程 10284 排队找bug 题解 单调队列 或者 线段树RMQ
注:只是看到题目,未评测,所以不确定代码正确性,但是算法思路没有问题 描述 同学们的bug还真是多啊,orz... 春节期间大家存下的bug都来找肖老师解决了. 每个人都有bug,但是肖老师却只有一个 ...
- [NOIP10.5模拟赛]1.a题解--离散化+异或线段树
题目链接: 咕咕咕 https://www.luogu.org/problemnew/show/CF817F 闲扯 在Yali经历几天折磨后信心摧残,T1数据结构裸题考场上连暴力都TM没打满 分析 观 ...
随机推荐
- Day14 Python基础之os/sys/hashlib模块(十二)
os模块 os.getcwd() #获取当前工作路径 os.chdir(‘dirname1/dirname2/dirname3’) #改变当前脚本的工作路径,相当于cmd下的cd os.makedi ...
- spring实例入门
首先是bean文件: package onlyfun.caterpillar; public class HelloBean { private String helloWord = " ...
- Failure to transfer org.apache.maven:maven-archiver:pom:2.5 from https://repo.maven.apache.org/maven2 was cached in the local repository, resolution will not be reattempted until the update interval o
pom.xml报错: Failure to transfer org.apache.maven:maven-archiver:pom:2.5 from https://repo.maven.apach ...
- Tomcat Windows 系统下安装及注意事项
1 获取Tomcat 安装包 http://tomcat.apache.org/ tar.gz 文件是Linux系统下的安装版本 exe文件是 Windows系统下的安装版本 zip 文件是Wind ...
- leetcode资料整理
注:借鉴了 http://m.blog.csdn.net/blog/lsg32/18712353 在Github上提供leetcode有: 1.https://github.com/soulmachi ...
- python学习笔记(9)--函数
函数定义: def <函数名>(<参数(0个或多个)>): 函数体 return <返回值> 参数有非可选参数,和可选参数,可选参数放在参数列表的最后,可以为可选参 ...
- Java对象clone()的测试
Object中自带native clone()方法. 研究了一下用法. public class DeepCopyTest { public static void main(String[] arg ...
- 深度学习+CRF解决NER问题
参考https://github.com/shiyybua/NER 1.开发环境:python3.5+tensorflow1.5+pycharm 2.从https://github.com/shiyy ...
- 灰度图Matlab
[转载]matlab中pcolor绘图“少画一行”的问题 本文是关于matlab pcolor函数(slice,surf函数的情况与这个类似)绘图的问题的一些解决方案,在此记录备用 经 常处理三维(或 ...
- Xamarin 简化的Android密钥库签名
安装 开始使用这个新工具不容易.在Visual Studio 2017(即将推出VS 2015),只需转到工具 - >扩展和更新,并搜索“密钥库”来查找扩展名. 下载后,只需重新启动Visual ...