【BZOJ5213】[ZJOI2018]迷宫(神仙题)

题面

BZOJ

洛谷

题解

首先可以很容易的得到一个\(K\)个点的答案。

构建\(K\)个点分别表示\(mod\ K\)的余数。那么点\(i\)的出边\(j\)指向\(i*m+j\ mod\ K\)。容易证明这样子一定是可行的。

但是我们显然还有一部分点是可以丢掉的,即出现点等价的时候,直接合并两个点即可。

那么什么情况下两个点等价呢?显然是两个点可以到达的点集相同的时候是可以直接把这两个点给合并的。

考虑一下\(i*m\)在模\(K\)意义下相等的数的个数,令\(d=gcd(m,K)\),那么合法的取值有\(K/d\)个。定义一个参数\(l\)表示还有\([1,l]\)这些数存在。如果\(l>k/d\),那么在范围内可以取遍所有的合法取值,那么合并这些之后,剩下的部分递归处理,这里删去了\(\frac{m}{d}(k-l)\)个合并之后到数。否则如果\(l\le k/d\),或者\(d=1\),证明必定两两不等,所以这\(l\)个数必须要。

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
ll m,k;int T;
ll Solve(ll l,ll k)
{
ll d=__gcd(m,k);if(d==1||l<=k/d)return l;
if(k<=(double)m*(k-l))return k/d;
return m/d*(k-l)+Solve((k-m*(k-l))/d,k/d);
}
int main()
{
scanf("%d",&T);
while(T--)scanf("%lld%lld",&m,&k),printf("%lld\n",Solve(k-1,k)+1);
return 0;
}

【BZOJ5213】[ZJOI2018]迷宫(神仙题)的更多相关文章

  1. bzoj5213: [Zjoi2018]迷宫

    好题!话说省选的都开始构造了吗 由于有K的倍数的限制所以不妨取模,先建K个点表示0~K-1这些数,第i个点向[i*m,i*m+m]建边.不难发现这是合法的但不一定是最优的 考虑合并等价的点,首先从直观 ...

  2. yyb博客的几道神仙题

    该比赛链接 T5 题意: 给你一个\(n\times n\)的网格,开始有\(m\)个被涂成黑色的格子,如果存在三个格子\((x,y)\),\((y,z)\),\((z,x)\)满足\((x,y)\) ...

  3. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  4. 【BZOJ1071】[SCOI2007]组队(神仙题)

    [BZOJ1071][SCOI2007]组队(神仙题) 题面 BZOJ 洛谷 题解 首先把式子整理一下,也就是\(A*h+B*v\le C+A*minH+B*minV\) 我们正常能够想到的做法是钦定 ...

  5. 【agc006f】Blackout(神仙题)

    [agc006f]Blackout(神仙题) 翻译 给定一个\(n*n\)的网格图,有些格子是黑色的.如果\((x,y),(y,z)\)都是黑色的,那么\((y,x)\)也会被染黑,求最终黑格子数量. ...

  6. 【BZOJ3244】【NOI2013】树的计数(神仙题)

    [BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...

  7. 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)

    题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...

  8. P3202 [HNOI2009]通往城堡之路 神仙题

    这个题不是坑人吗...写个tarjan标签,然后拿这么个神仙题来搞...代码有点看不懂,有兴趣的可以去洛谷题解区看看,懒得想了. 题干: 题目描述 听说公主被关押在城堡里,彭大侠下定决心:不管一路上有 ...

  9. Codeforces & Atcoder神仙题做题记录

    鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...

随机推荐

  1. ElastichSearch漏洞

    Ubuntu服务器被黑经历(ElastichSearch漏洞) 起因 最近我们的一台Ubuntu阿里云服务器一直提示有肉鸡行为,提示了好几天,开始并没有关注,然后连续几天后发现应该是个大问题啊.很可能 ...

  2. Linux sed使用方法

    目录 sed处理流程 测试数据 sed命令格式 sed命令行格式 行定位 定位1行 定位区间行(多行) 定位某一行之外的行 定位有跨度的行 操作命令 -a (新增行) -i(插入行) -c(替代行) ...

  3. windows下linux子系统安装

    1.打开Windows功能中的使用于linux的Windows子系统 2.应用商店中下载需要的linux 3.下载完成后运行等待安装并输入用户名密码  4.查看系统信息 先后 sudo apt-get ...

  4. python3 Tkinter GUI 试水

    from tkinter import * #导入tkinter下所有包,用于GUI开发#窗口创建tk=Tk()cans=Canvas(tk,width=400,height=400)#定义窗口规格c ...

  5. linux 安装 SVN server

    安装 使用yum安装非常简单: yum install subversion 配置 2.1. 创建仓库 我们这里在/home下建立一个名为svn的仓库(repository),以后所有代码都放在这个下 ...

  6. [转帖] 百度知道: KMS 和OSPP

    https://zhidao.baidu.com/question/1819332749671662308.html Key Management Service (KMS).目前Windows Se ...

  7. IIS下载地址

    https://www.microsoft.com/zh-cn/download/confirmation.aspx?id=1038

  8. python爬虫之PyQuery的基本使用

    PyQuery库也是一个非常强大又灵活的网页解析库,如果你有前端开发经验的,都应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery 是 Python 仿照 jQuery 的严 ...

  9. python数据结构与算法第六天【栈与队列】

    1.栈和队列的原理 栈:后进先出(LIFO),可以使用顺序表和链表实现 队列:先进先出(FIFO),可以使用顺序表和链表实现 2.栈的实现(使用顺序表实现) #!/usr/bin/env python ...

  10. todo项目总结

    vue+webpack项目工程配置 1.vue-loader+webpack项目配置 2.webpack配置项目加载各种静态资源 3.webpack-dev-server的配置和使用 安装: pack ...