MT【310】均值不等式
(2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:
$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\sqrt{2}+x_n)\ge(\sqrt{2}+1)^n$

分析:根据$\dfrac{\sum\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}=\dfrac{\sqrt{2}}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
$\dfrac{\sum\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}=\dfrac{1}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
两式相加即得.
MT【310】均值不等式的更多相关文章
- 均值不等式中的一则题目$\scriptsize\text{$(a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\ge \cfrac{25}{2}$}$
例题已知正数\(a.b\)满足条件\(a+b=1\),求\((a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\)的最小值: 易错方法\((a+\cfrac{1}{a})^2+ ...
- 一种基于均值不等式的Listwise损失函数
一种基于均值不等式的Listwise损失函数 1 前言 1.1 Learning to Rank 简介 Learning to Rank (LTR) , 也被叫做排序学习, 是搜索中的重要技术, 其目 ...
- LightOJ 1098(均值不等式,整除分块玄学优化)
We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not ...
- MT【175】刚刚凑巧
已知$\Delta ABC$满足$\sin^2A+\sin^2B+\sin^2C=2\sqrt{3}\sin A\sin B\sin C,a=2$,求$A$ 提示:利用正弦定理:$a^2+b^2+c^ ...
- Fast Fourier Transform
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...
- 【uoj58】 WC2013—糖果公园
http://uoj.ac/problem/58 (题目链接) 题意 给定一棵树,每个点有一个颜色,提供两种操作: 1.询问两点间路径上的${\sum{v[a[i]]*w[k]}}$,其中${a[i] ...
- Codeforces449A Jzzhu and Chocolate && 449B Jzzhu and Cities
CF挂0了,简直碉堡了.两道题都是正确的思路但是写残了.写个解题报告记录一下心路历程. A题问的是 一个n*m的方块的矩形上切k刀,最小的那一块最大可以是多少.不难发现如果纵向切k1刀,横向切k2刀, ...
- [BZOJ 2738] 矩阵乘法 【分块】
题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...
- [BZOJ 2821] 作诗(Poetize) 【分块】
题目链接:BZOJ - 2821 题目分析 因为强制在线了,所以无法用莫队..可以使用分块来做. 做法是,将 n 个数分成 n/x 个块,每个块大小为 x .先预处理出 f[i][j] ,表示从第 i ...
随机推荐
- 2018湘潭邀请赛C题(主席树+二分)
题目地址:https://www.icpc.camp/contests/6CP5W4knRaIRgU 比赛的时候知道这题是用主席树+二分,可是当时没有学主席树,就连有模板都不敢套,因为代码实在是太长了 ...
- python三数之和
给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可以包含重复的三元组. ...
- 用python实现一个回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- python的循环和选择
一.python的选择结构: python的选择结构有两种选择结构一种是单选择(if...else)另一种则是多选择结构(if ...elif...elif) 下面用代码来实现: 1.if....el ...
- AQS解析(未完成)
参考:Java并发之AQS详解 同步队列和condition等待队列.获取到锁的线程则处于可运行状态,而未获取到锁的线程则被添加到同步队列中,等待获取到锁的线程释放锁. 一.数据结构 Node sta ...
- 项目集成自动分词系统ansj,实现自定义词库
一,分词系统地址:https://github.com/NLPchina/ansj_seg 二,为什么选择ansj? 1.项目需求: 我们平台要做手机售后的舆情分析,即对购买手机的用户的评论进行分析. ...
- Requires: libc.so.6(GLIBC_2.14)(64bit)
centos6 - CentOS 6 - libc.so.6(GLIBC_2.14)(64bit) is needed by - Server Faulthttps://serverfault.com ...
- 设置永久环境变量linux
========================================================================== http://www.cnblogs.com/Bi ...
- vue路由的知识点
this.$router.push({name:'login',query:{name:'ww',age:18}}) 传数据 this.$route.query 拿数据 meta:{ "dl ...
- flutter图片铺满父框
正常我们需要显示一张图片,会用到Image这个控件. 打个比方,我们加载一张本地的图片, 先看一下这个Image.asset的源码: Image.asset(String name, { Key ke ...