MT【310】均值不等式
(2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:
$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\sqrt{2}+x_n)\ge(\sqrt{2}+1)^n$

分析:根据$\dfrac{\sum\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}=\dfrac{\sqrt{2}}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
$\dfrac{\sum\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}=\dfrac{1}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
两式相加即得.
MT【310】均值不等式的更多相关文章
- 均值不等式中的一则题目$\scriptsize\text{$(a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\ge \cfrac{25}{2}$}$
例题已知正数\(a.b\)满足条件\(a+b=1\),求\((a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\)的最小值: 易错方法\((a+\cfrac{1}{a})^2+ ...
- 一种基于均值不等式的Listwise损失函数
一种基于均值不等式的Listwise损失函数 1 前言 1.1 Learning to Rank 简介 Learning to Rank (LTR) , 也被叫做排序学习, 是搜索中的重要技术, 其目 ...
- LightOJ 1098(均值不等式,整除分块玄学优化)
We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not ...
- MT【175】刚刚凑巧
已知$\Delta ABC$满足$\sin^2A+\sin^2B+\sin^2C=2\sqrt{3}\sin A\sin B\sin C,a=2$,求$A$ 提示:利用正弦定理:$a^2+b^2+c^ ...
- Fast Fourier Transform
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...
- 【uoj58】 WC2013—糖果公园
http://uoj.ac/problem/58 (题目链接) 题意 给定一棵树,每个点有一个颜色,提供两种操作: 1.询问两点间路径上的${\sum{v[a[i]]*w[k]}}$,其中${a[i] ...
- Codeforces449A Jzzhu and Chocolate && 449B Jzzhu and Cities
CF挂0了,简直碉堡了.两道题都是正确的思路但是写残了.写个解题报告记录一下心路历程. A题问的是 一个n*m的方块的矩形上切k刀,最小的那一块最大可以是多少.不难发现如果纵向切k1刀,横向切k2刀, ...
- [BZOJ 2738] 矩阵乘法 【分块】
题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...
- [BZOJ 2821] 作诗(Poetize) 【分块】
题目链接:BZOJ - 2821 题目分析 因为强制在线了,所以无法用莫队..可以使用分块来做. 做法是,将 n 个数分成 n/x 个块,每个块大小为 x .先预处理出 f[i][j] ,表示从第 i ...
随机推荐
- UnderWater+SDN论文之三
Software-Defined Underwater Acoustic Modems: Historical Review and the NILUS Approach Source: IEEE J ...
- JavaWeb连接SQLServer数据库并完成一个登录界面及其功能设计。
一.JDBC连接SQLserver数据库的步骤: 1.下载SQLserver的JDBC驱动文件——Microsoft JDBC Driver 4.0 for SQL Server 2.例如下载得到的文 ...
- py使用笔记-pandas函数
1,nan替换为0df = df(np.nan, 0, regex=True)2.inf替换为0df= df(np.inf, 0.0, regex=True)3.从数据库读取数据到dataframei ...
- 【转】linux下查看磁盘分区的文件系统格式
https://www.cnblogs.com/youbiyoufang/p/7607174.html
- [转帖]BRD、MRD 和 PRD
来源: https://www.zhihu.com/question/19655491 BRD 商业需求文档 Business Requirement Document MRD 市场需求文档 Mark ...
- 428.x的n次幂
实现 pow(x,n) 不用担心精度,当答案和标准输出差绝对值小于1e-3时都算正确 样例 Pow(2.1, 3) = 9.261 Pow(0, 1) = 0 Pow(1, 0) = 1 挑战 O(l ...
- 非关系型数据库----MongoDB
一.什么是MongoDB? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提 ...
- iperf网络测试
iperf网络测试文档 地址: https://www.jianshu.com/p/942a9d9bc704
- mysql 常用字段类型
tinyint[(m)] [unsigned] [zerofill] 1字节 极小整数,数据类型用于保存一些范围的整数数值范围: 有符号: -128 - 127. 无符号: - 255 特别的: My ...
- HashMap、HashTable、ConcurrentHashMap、HashSet区别 线程安全类
HashMap专题:HashMap的实现原理--链表散列 HashTable专题:Hashtable数据存储结构-遍历规则,Hash类型的复杂度为啥都是O(1)-源码分析 Hash,Tree数据结构时 ...