PyTorch--双向递归神经网络(B-RNN)概念,源码分析
关于概念:
BRNN连接两个相反的隐藏层到同一个输出.基于生成性深度学习,输出层能够同时的从前向和后向接收信息.该架构是1997年被Schuster和Paliwal提出的.引入BRNNS是为了增加网络所用的输入信息量.例如,多层感知机(MLPS)和延时神经网络(TDNNS)在输入数据的灵活性方面是非常有局限性的.因为他们需要输入的数据是固定的.标准的递归神静
网络也有局限,就是将来的数据数据不能用现在状态来表达.BRNN恰好能够弥补他们的劣势.它不需要输入的数据固定,与此同时,将来的输入数据也能从现在的状态到达.
BRNN的原理是将正则RNN的神经元分成两个方向。一个用于正时方向(正向状态),另一个用于负时间方向(反向状态).这两个状态的输出没有连接到相反状态的输入。通过这两个时间方向,可以使用来自当前时间帧的过去和将来作为输入信息。
双向RNN的思想和原始版RNN有一些许不同,只要是它考虑到当前的输出不止和之前的序列元素有关系,还和之后的序列元素也是有关系的。举个例子来说,如果我们现在要去填一句话中空缺的词,那我们直观就会觉得这个空缺的位置填什么词其实和前后的内容都有关系,对吧。双向RNN其实也非常简单,我们直观理解一下,其实就可以把它们看做2个RNN的叠加。输出的结果这个 时候就是基于2个RNN的隐状态计算得到的。

关于训练:
BRNNS可以使用RNNS类似的算法来做训练.因为两个方向的神经元没有任何相互作用。然而,当应用反向传播时,由于不能同时更新输入和输出层,因此需要额外的过程。训练的一般流程如下:对于前向传递,先传递正向状态和后向状态,然后输出神经元通过.对于后向传递,首先输出神经元,然后传递正向状态和后退状态。在进行前向和后向传递之后,更新权重。
关于源码:
首先看一下BRNN的定义,定义中使用了两层的网络,使用的模型是nn.LSTM.这里的LSTM是一类可以处理长期依赖问题的特殊的RNN,由Hochreiter 和 Schmidhuber于1977年提出,目前已有多种改进,且广泛用于各种各样的问题中。LSTM主要用来处理长期依赖问题,与传统RNN相比,长时间的信息记忆能力是与生俱来的。参数bidirectional=True是表示
该网路是一个双向的网络.这里的参数batch_first=True,因为nn.lstm()接受的数据输入是(序列长度,batch,输入维数),这和我们cnn输入的方式不太一致,所以使用batch_first,我们可以将输入变成(batch,序列长度,输入维数)
# Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes) # 2 for bidirection def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2) # Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out
在实现函数中,首先设置初始化的状态:h0,c0,然后根据初始化的状态来输出决策后的内容,把结果线性插值法过滤后输出.
这个神经网络的其他部分使用和别的网络是一样的,训练部分和测试就不再一一介绍了,想知道的朋友可以参考我前面的文章的介绍.下面给出整体的源码:
最终的可运行源码:
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
input_size = 784
hidden_size = 500
num_classes = 10
#input_size = 84
#hidden_size = 50
#num_classes = 2
num_epochs = 5
batch_size = 100
learning_rate = 0.001 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True) test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out model = NeuralNet(input_size, hidden_size, num_classes).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
#print(predicted)
correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
结果这里就不再贴出来了,想知道的朋友可以自己运行一下.
参考文档:
1 https://cloud.tencent.com/developer/article/1134467
PyTorch--双向递归神经网络(B-RNN)概念,源码分析的更多相关文章
- 递归神经网络(RNN,Recurrent Neural Networks)和反向传播的指南 A guide to recurrent neural networks and backpropagation(转载)
摘要 这篇文章提供了一个关于递归神经网络中某些概念的指南.与前馈网络不同,RNN可能非常敏感,并且适合于过去的输入(be adapted to past inputs).反向传播学习(backprop ...
- vue双向绑定的原理及实现双向绑定MVVM源码分析
vue双向绑定的原理及实现双向绑定MVVM源码分析 双向数据绑定的原理是:可以将对象的属性绑定到UI,具体的说,我们有一个对象,该对象有一个name属性,当我们给这个对象name属性赋新值的时候,新值 ...
- 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念 | 百篇博客分析OpenHarmony源码 | v25.01
百篇博客系列篇.本篇为: v25.xx 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度 ...
- jQuery 2.0.3 源码分析 Deferred概念
JavaScript编程几乎总是伴随着异步操作,传统的异步操作会在操作完成之后,使用回调函数传回结果,而回调函数中则包含了后续的工作.这也是造成异步编程困难的主要原因:我们一直习惯于“线性”地编写代码 ...
- jQuery 2.0.3 源码分析 Deferrred概念
转载http://www.cnblogs.com/aaronjs/p/3348569.html JavaScript编程几乎总是伴随着异步操作,传统的异步操作会在操作完成之后,使用回调函数传回结果,而 ...
- Redux源码分析之基本概念
Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...
- 【Java】HashMap源码分析——基本概念
在JDK1.8后,对HashMap源码进行了更改,引入了红黑树.在这之前,HashMap实际上就是就是数组+链表的结构,由于HashMap是一张哈希表,其会产生哈希冲突,为了解决哈希冲突,HashMa ...
- Linux内核2.6.14源码分析-双向循环链表代码分析(巨详细)
Linux内核源码分析-链表代码分析 分析人:余旭 分析时间:2005年11月17日星期四 11:40:10 AM 雨 温度:10-11度 编号:1-4 类别:准备工作 Email:yuxu97101 ...
- 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 百篇博客分析OpenHarmony源码 | v64.01
百篇博客系列篇.本篇为: v64.xx 鸿蒙内核源码分析(索引节点篇) | 谁是文件系统最重要的概念 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么 ...
- 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 百篇博客分析OpenHarmony源码 | v62.01
百篇博客系列篇.本篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o 本篇开始说文件系统,它是内核五大模块之一,甚至有Linux的设计哲学是" ...
随机推荐
- Skipping acquire of configured file ···doesn't support architecture 'i386' acquire of configured file
系统更新的时候报错: Skipping acquire of configured file 'main/binary-i386/Packages' as repository 'http://rep ...
- 软工作业1—java实现wc.exe
github项目地址 https://github.com/liyizhu/wc.exe WC 项目要求 基本功能列表: wc.exe -c file.c //返回文件 file.c 的字符数 ...
- 为什么禁止在 foreach 循环里进行元素的 remove/add 操作
首先看下边一个例子,展示了正确的做法和错误的错发: 这是为什么呢,具体原因下面进行详细说明: 1.foreach循环(Foreach loop)是计算机编程语言中的一种控制流程语句,通常用来循环遍历数 ...
- 用turtle库实现汉诺塔问题~~~~~
汉诺塔问题 问题描述和背景: 汉诺塔是学习"递归"的经典入门案例,该案例来源于真实故事. ...
- YAML-CPP
yaml作为一种便捷的文件格式,通过c++进行操作时,可以利用yaml-cpp进行. 一,yaml-cpp的安装 下载源码 git clone https://github.com/jbeder/ya ...
- C#学习笔记14——TRACE、DEBUG和TRACESOURCE的使用以及日志设计
Trace.Debug和TraceSource的使用以及日志设计 .NET Framework 命名空间 System.Diagnostics 包含用于跟踪执行流程的 Trace.Debug 和 ...
- MyBatis中<if test=" ">标签条件不起作用
问题产生? 今天在做Excel导出的时候,有个判断一个状态的字段,我的这个字段是int类型的,还有两个时间类型,我在判断的时候给的是Long类型的. 在测试的时候发现,不管怎么样都不执行if条件里面的 ...
- Linux环境下Flask部署至apache
https://blog.csdn.net/rainbowlemonade/article/details/79725328
- Jmeter—关联【学习截图】
- 使用mybatis plus 操作数据库
mybatis plus 是基于mybatis 的一个增强包,比 mybatis 更加容易使用. 特点: 1.分页支持 2.支持自定义查询. 3.简单的情况下,不需要写map.xml 文件 4.支持租 ...