分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

 def step():
try:
headers = {
。。。。。
}
r = requests.get(url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
url = soup.find_all(正则表达式)
for i in url:
url2 = i.find_all('a')
for j in url2:
step1url =url + j['href']
print step1url
step2(step1url)
except Exception,e:
print e

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

 def step2(step1url):
try:
headers = {
。。。。
}
r = requests.get(step1url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
a = soup.find('div',id='divTbl')
if a:
url = soup.find_all('td',class_='S-ITabs')
for i in url:
classifyurl = i.find_all('a')
for j in classifyurl:
step2url = url + j['href']
#print step2url
step3(step2url)
else:
postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

 def producturl(url):
try:
p1url = doc.xpath(正则表达式)
for i in xrange(1,len(p1url) + 1):
p2url = doc.xpath(正则表达式)
if len(p2url) > 0:
producturl = url + p2url[0].get('href')
count = db[table].find({'url':producturl}).count()
if count <= 0:
sn = getNewsn()
db[table].insert({"sn":sn,"url":producturl})
print str(sn) + 'inserted successfully'
else:
'url exist' except Exception,e:
print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

 def parser(sn,url):
try:
headers = {
。。。。。。
}
r = requests.get(url, headers=headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
dt = {}
#partno
a = soup.find("meta",itemprop="mpn")
if a:
dt['partno'] = a['content']
#manufacturer
b = soup.find("meta",itemprop="manufacturer")
if b:
dt['manufacturer'] = b['content']
#description
c = soup.find("span",itemprop="description")
if c:
dt['description'] = c.get_text().strip()
#price
price = soup.find("table",class_="table table-condensed occalc_pa_table")
if price:
cost = {}
for i in price.find_all('tr'):
if len(i) > 1:
td = i.find_all('td')
key=td[0].get_text().strip().replace(',','')
val=td[1].get_text().replace(u'\u20ac','').strip()
if key and val:
cost[key] = val
if cost:
dt['cost'] = cost
dt['currency'] = 'EUR' #quantity
d = soup.find("input",id="ItemQuantity")
if d:
dt['quantity'] = d['value']
#specs
e = soup.find("div",class_="row parameter-container")
if e:
key1 = []
val1= []
for k in e.find_all('dt'):
key = k.get_text().strip().strip('.')
if key:
key1.append(key)
for i in e.find_all('dd'):
val = i.get_text().strip()
if val:
val1.append(val)
specs = dict(zip(key1,val1))
if specs:
dt['specs'] = specs
print dt if dt:
db[table].update({'sn':sn},{'$set':dt})
print str(sn) + ' insert successfully'
time.sleep(3)
else:
error(str(sn) + '\t' + url)
except Exception,e:
error(str(sn) + '\t' + url)
print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

python数据抓取分析(python + mongodb)的更多相关文章

  1. 数据抓取分析(python + mongodb)

    分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: def step(): try: ...

  2. Python数据抓取技术与实战 pdf

    Python数据抓取技术与实战 目录 D11章Python基础1.1Python安装1.2安装pip1.3如何查看帮助1.4D1一个实例1.5文件操作1.6循环1.7异常1.8元组1.9列表1.10字 ...

  3. Python数据抓取_BeautifulSoup模块的使用

    在数据抓取的过程中,我们往往都需要对数据进行处理 本篇文章我们主要来介绍python的HTML和XML的分析库 BeautifulSoup 的官方文档网站如下 https://www.crummy.c ...

  4. Python数据抓取(1) —数据处理前的准备

    (一)数据抓取概要 为什么要学会抓取网络数据? 对公司或对自己有价值的数据,80%都不在本地的数据库,它们都散落在广大的网络数据,这些数据通常都伴随着网页的形式呈现,这样的数据我们称为非结构化数据 如 ...

  5. Python数据抓取(2) —简单网络爬虫的撰写

    (一)使用Requests存储网页 Requests 是什么?网络资源(URLs)抓取套件 优点? 改善urllib2的缺点,让使用者以最简单的方式获取网络资源 可以使用REST操作(POST,PUT ...

  6. Python数据抓取(3) —抓取标题、时间及链接

    本次分享,jacky将跟大家分享如何将第一财经文章中的标题.时间以及链接抓取出来 (一)观察元素抓取位置 网页的原始码很复杂,我们必须找到特殊的元素做抽取,怎么找到特殊的元素呢?使用开发者工具检视每篇 ...

  7. 吴裕雄--天生自然python学习笔记:WEB数据抓取与分析

    Web 数据抓取技术具有非常巨大的应用需求及价值, 用 Python 在网页上收集数据,不仅抓取数据的操作简单, 而且其数据分析功能也十分强大. 通过 Python 的时lib 组件中的 urlpar ...

  8. Python爬虫工程师必学——App数据抓取实战 ✌✌

    Python爬虫工程师必学——App数据抓取实战 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 爬虫分为几大方向,WEB网页数据抓取.APP数据抓取.软件系统 ...

  9. python爬虫(一)_爬虫原理和数据抓取

    本篇将开始介绍Python原理,更多内容请参考:Python学习指南 为什么要做爬虫 著名的革命家.思想家.政治家.战略家.社会改革的主要领导人物马云曾经在2015年提到由IT转到DT,何谓DT,DT ...

随机推荐

  1. Maven [ERROR] 不再支持源选项 5。请使用 6 或更高版本

    报错信息如下 解决办法一 在settings.xml文件中指定jdk版本 既可以修改全局的settings.xml文件(C:\Program Files\apache-maven-3.6.0\conf ...

  2. RNQOJ 21 FBI数

    如果字符串全是0输出B,全是1输出I,01混合输出F,如果字符串分解到只剩下一个字符的时候我们可以很简单的判断出来是B串还是I串,如果处在父节点的位置,这里运用递归,通过子节点的返回值来判断子节点是混 ...

  3. springboot pom.xml记

    本文包括: springboot 基本pom.xml配置 热部署 配置打包插件 maven pom.xml配置详解 1. springboot 基本pom.xml配置 <project xmln ...

  4. call和apply(学习笔记)

    call() call() 方法调用一个函数, 其具有一个指定的this值和分别地提供的参数(参数的列表). 语法: function.call(thisArg, arg1, arg2, ...) 参 ...

  5. 20155205 郝博雅 Exp9 Web安全基础

    20155205 郝博雅 Exp9 Web安全基础 一.实验内容 一共做了13个题目. 1.WebGoat 输入java -jar webgoat-container-7.1-exec.jar 在浏览 ...

  6. SimpleCursorAdapter使用代码

    package com.kale.cursoradapter; import android.app.Activity; import android.database.Cursor; import ...

  7. cobbler实现系统自动化安装centos

    cobbler [epel] cobbler服务集成 PXE DHCP rsync Http DNS Kickstart IPMI[电源管理] 1.软件安装 yum install cobbler d ...

  8. vim配置文件.vimrc

    20171127备份 syntax on "自动语法高亮 set number "显示行号 set autoindent "回车后自动缩进 set tabstop=4 & ...

  9. 基于fpga的vga学习(1)

    这次学习我主要掌握了vga的基本运行原理. vga基本概念: VGA时序主要包括两条信号线(HS,VS)的输出——行扫描和场扫描.VGA采用逐行扫描,每个像素对应的点扫描.行与行之间存在消隐以及显示时 ...

  10. Failed to start end point associated with ProtocolHandler ["http-nio-8080"]

    Spring boot运行项目报错,说明8080端口被占用 此时任务管理器结束javax程序即可.