召回率,精确率,mAP如何计算
首先用训练好的模型得到所有测试样本的confidence score,每一类(如car)的confidence score保存到一个文件中(如comp1_cls_test_car.txt)。假设共有20个测试样本,每个的id,confidence score和ground truth label如下:
接下来对confidence score排序,得到:
然后计算precision和recall,这两个标准的定义如下:
圆圈内(true positives + false positives)是我们选出的元素,它对应于分类任务中我们取出的结果,比如对测试样本在训练好的car模型上分类,我们想得到top-5的结果,即:
在这个例子中,根据ge_label真实标签,true positives就是指第4和第2张图片,false positives就是指第13,19,6张图片。方框内圆圈外的元素(false negatives和true negatives)是相对于方框内的元素而言,在这个例子中,是指confidence score排在top-5之外的元素,即:
其中,false negatives是指第9,16,7,20张图片,true negatives是指第1,18,5,15,10,17,12,14,8,11,3张图片。
那么,这个例子中Precision=2/5=40%,意思是对于car这一类别,我们选定了5个样本,其中正确的有2个,即准确率为40%;Recall=2/6=30%,意思是在所有测试样本中,共有6个car,但是因为我们只召回了2个,所以召回率为30%。
实际多类别分类任务中,我们通常不满足只通过top-5来衡量一个模型的好坏,而是需要知道从top-1到top-N(N是所有测试样本个数,本文中为20)对应的precision和recall。显然随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。把recall当成横坐标,precision当成纵坐标,即可得到常用的precision-recall曲线。这个例子的precision-recall曲线如下:
接下来说说AP的计算,此处参考的是PASCAL VOC CHALLENGE的计算方法。首先设定一组阈值,[0, 0.1, 0.2, …, 1]。然后对于recall大于每一个阈值(比如recall>0.3),我们都会得到一个对应的最大precision。这样,我们就计算出了11个precision。AP即为这11个precision的平均值。这种方法英文叫做11-point interpolated average precision。
当然PASCAL VOC CHALLENGE自2010年后就换了另一种计算方法。新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M, 2/M, ..., M/M),对于每个recall值r,我们可以计算出对应(r' > r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。计算方法如下:
相应的Precision-Recall曲线(这条曲线是单调递减的)如下:
对每个recall对应的precision求均值就得到所谓的average precision,即AP。这样就得到了对应一个类(分类器)的average precision,它表示的是该模型在某个类别上的好坏,如果要求模型在所有类别上的好坏,就求所有类别对应的AP的均值,即所谓的mAP。
参考链接:http://blog.sina.com.cn/s/blog_9db078090102whzw.html
召回率,精确率,mAP如何计算的更多相关文章
- 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R
准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- Recall(召回率)and Precision(精确率)
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7668501.html 前言 机器学习中经过听到" ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...
- 精确率、准确率、召回率和F1值
当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...
- 精确率、召回率、准确率与ROC曲线
精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本, ...
- (转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召 ...
- 你的GAN训练得如何--GAN 的召回率(多样性)和精确率(图像质量)方法评估
生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性.之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现.本文认为现 ...
随机推荐
- GUI学习之二——PyQt控件初识
一.控件概念 控件是一个程序界面上的各个独立的元素, 它具备用户点击.接收用户输入.展示不同内容.存放其他控件等功能. 二.控件分类 常用的控件按功能可以分为以下几种类 按钮 QPushButton— ...
- MySQL中的latch(闩锁)详解——易产生的问题以及原因分析
Latch 什么是latch: 锁是数据库系统区别与文件系统的一个关键特性.锁机制用于管理对共享资源的并发访问.Innodb存储引擎在行级别上对表数据上锁,这固然不错.但是Innodb也会在多个地方使 ...
- TCP的三次握手 与 四次挥手
TCP的连接建立是一个三次握手过程,目的是为了通信双方确认开始序号,以便后续通信的有序进行 主要步骤: 服务器一定处于Listen状态,否则客户端发过来的连接会被拒绝.注:服务器和客户端的角色是相对的 ...
- vue-element 动态单选多选全选
实现效果如图 数据格式如下: pps: [{"code":"6","createTime":"2018-09-07 00:00:0 ...
- C语言 指针基础篇 数组,函数与指针的运用 2 14
下面看看如何在函数中运用指针吧 下面是往函数传入指针的简单操作,不是传入数组的.判断一个a是否大于b是的话给,是的话对其进行操作,不是的话就直接返回. #include <stdio.h> ...
- 【慕课网实战】二、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
MapReduce的局限性: 1)代码繁琐: 2)只能够支持map和reduce方法: 3)执行效率低下: 4)不适合迭代多次.交互式.流式的处理: 框架多样化: 1)批处理(离线):MapRed ...
- 移动端布局:视口viewport的理解
移动端开发中,有一些基本概念需要理解清楚,才能更好的组织编程逻辑.在刚接触时,移动端视口的缩放和rem单位的缩放搞混淆了,弄得自己很蒙圈.所以仔细总结下自己的理解. 移动端的适配,我理解为两点: 第一 ...
- openXML写Excel列组合
重要代码: DOS.SheetData sheetData = new DOS.SheetData(); DOS.Columns columns = new DOS.Columns(); DOS.Co ...
- <笔记>更新某条数据库记录必须更新所有字段
今天用TP更新数据库数据时,用id得到模型对象,再通过该对象更新其他字段的数据,发现报错
- 【Android开源库】 PagerSlidingTabStrip从头到脚
简介 PagerSlidingTabStrip,是我个人经常使用到的一个和ViewPager配合的页面指示器,可以满足开发过程中常用的需求,如类似于今日头条的首页新闻内容导航栏等等,之前自己开发的Ju ...