1. 读入图片并显示

import cv2

img = cv2.imread("longmao.jpg")
cv2.imshow("longmao", img)
cv2.waitKey(0) #等待按键,0表示永久等待
cv2.destroyAllWindows() #完成之后销毁窗体

2. RGB通道分离

基于numpy数组的方法

r = img[:, :, 2]
g = img[:, :, 1]
b = img[:, :, 0]

注意:OpenCV读取的顺序是BGR。

**基于OpenCV的RGB通道分离

b, g, r = cv2.split(img) #得到三个通道的值
b = cv2.split(img)[0]

3. RGB通道分离

img2 = cv2.merge([b, g, r])

4. 单像素处理

img[9, 9, 2] #通过数组索引的方式获取某个像素值,
#获取第10行,第10列(从0开始)的单独R颜色分量

5. 遍历图像

img = cv2.imread("longmao.jpg")
img2 = np.zeros(img.shape)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img2[i, j, 0] = img[i, j, 0] #b分量
#img2[i, j, 1] = img[i, j, 1] #g分量
#img2[i, j, 2] = img[i, j, 3] #R分量
#img2[i, j] = cv2.merge([img2[i, j, 0], img2[i, j, 1], img2[i, j, 2]])
cv2.imshow("copy", img2)
cv2.waitKey(0)
cv2.destroyAllWindows() #完成之后销毁窗体

图片的蓝色分量显示

5. 给图片添加椒盐噪声

import numpy as np
import cv2 def addPepperAndSalt(img, n):
img2 = img
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 255
img2[x, y, 1] = 255
img2[x, y, 2] = 255
return img2 img = cv2.imread("longmao.jpg")
img2 = addPepperAndSalt(img, 5000)
cv2.imshow("salt and pepper", img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

注:np.random.random():返回[0.0, 1)的随机数,默认是一个,括号里面可以选返回随机数的数量

6. 添加椒盐噪声进阶版

import cv2
import numpy as np def peppersalt(img, n, m):
"""
Add peppersalt to image
:param img: the image you want to add noise
:param n: the total number of noise (0 <= n <= width*height)
:param m: different mode
m=1:add only white noise in whole image
m=2:add only black noise in whole image
m=3:add black and white noise in whole image
m=4:add gray scale noise range from 0 to 255
m=5:add color noise in whole image,RGB is combined randomly with every channel ranges from 0 to 255
:return: the processed image
"""
img2 = img
if m == 1:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 255 #添加白色噪声
img2[x, y, 1] = 255
img2[x, y, 2] = 255
elif m == 2:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
img2[x, y, 0] = 0 #黑色
img2[x, y, 1] = 0
img2[x, y, 2] = 0
elif m == 3:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
flag = np.random.random() * 255 #随机添加白色或黑色
if flag > 128:
img2[x, y, 0] = 255
img2[x, y, 1] = 255
img2[x, y, 2] = 255
else:
img2[x, y, 0] = 0
img2[x, y, 1] = 0
img2[x, y, 2] = 0
elif m == 4:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
flag = int(np.random.random() * 255) #随机颜色
img2[x, y, 0] = flag
img2[x, y, 1] = flag
img2[x, y, 2] = flag
elif m == 5:
for i in range(n):
x = int(np.random.random() * img.shape[0])
y = int(np.random.random() * img.shape[1])
f1 = int(np.random.random() * 255) #彩色
f2 = int(np.random.random() * 255)
f3 = int(np.random.random() * 255)
img2[x, y, 0] = f1
img2[x, y, 1] = f2
img2[x, y, 2] = f3
return img2 if __name__ == "__main__":
img = cv2.imread("longmao.jpg")
img = peppersalt(img, 500, 5)
cv2.imshow("salt and pepper", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

7. 实现下雪demo

def snow2pic(img, n):
""" :param img: input a rgb picture
:param n: density of the snow
:return: the pic with snow in the top
"""
#length, width = img.shape
#top_length = length * 0.35
for i in range(n):
x = int(np.random.random() * img.shape[0] * 0.35)
y = int(np.random.random() * img.shape[1])
img[x, y, 0] = 255 # 添加白色噪声
img[x, y, 1] = 255
img[x, y, 2] = 255
for i in range(200):
x = int(np.random.random() * img.shape[0] * 0.8)
y = int(np.random.random() * img.shape[1])
img[x, y, 0] = 255 # 添加白色噪声
img[x, y, 1] = 255
img[x, y, 2] = 255
return img if __name__ == "__main__":
img = cv2.imread("longmao.jpg")
img = snow2pic(img, 400)
cv2.imshow("salt and pepper", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

基于python的OpenCV图像1的更多相关文章

  1. BugKu 2B+基于python的opencv的安装-------CTF 盲水印的套路

    BugKu杂项-2B 下载图片后,binwalk下跑一跑,发现有个zip,分离. 值得一提的是,这个zip是伪加密的. 但是你在分离的时候,伪加密的图片也给你分离出来了.这两个图片2B和B2肉眼看起来 ...

  2. Python下opencv使用笔记(图像频域滤波与傅里叶变换)

    Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654  收藏 展开 本文转载自  https://blog ...

  3. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  5. Python下opencv使用笔记(一)(图像简单读取、显示与储存)

    写在之前 从去年開始关注python这个软件,途中间间断断看与学过一些关于python的东西.感觉python确实是一个简单优美.easy上手的脚本编程语言,众多的第三方库使得python异常的强大. ...

  6. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  7. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. MVC4.0 使用Form认证,自定义登录页面路径Account/Login

    使用MVC4.0的时候,一般遇到会员登录.注册功能,我们都会使用Form认证,给需要身份验证的Action进行授权(需要登录后才能访问的Action添加[Authorize]属性标签),登录.注册的时 ...

  2. Terrocotta - 基于JVM的Java应用集群解决方案

    前言 越来越多的企业关键应用都必须采用集群技术,实现负载均衡(Load Balancing).容错(Fault Tolerance)和灾难恢复(Failover).以达到系统可用性(High Avai ...

  3. Windows下配置Mysql

    这里说的配置Mysql,是在安装时进行的,请先查看:Windows平台下安装Mysql 紧接上文,安装完成后将配置选项打上对勾,按下“Finish”,出现下面的界面,这里有一个很好的功能,mysql配 ...

  4. STM32F2系列低功耗总结

    序号 运行状态 进入指令(stm32f2xx_pwr.c) 退出条件 状态 IO管脚状态 进一步降低功耗的措施 1 运行模式 上电/系统复位后的默认模式, HCLK驱动CPU运行代码 可通过指令 进入 ...

  5. R-kmeans聚类算法

    K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用.看了Andrew Ng的这个讲义后才有些明白K- ...

  6. MySql按日期进行统计

    1 数据库字段pk_time(Varchar) 当天的数据 SELECT * FROM 表 WHERE date(fk_time) = curdate(); 当月的数据 SELECT *FROM 表 ...

  7. 基于node写了个工具,可以在线制作“sorry,为所欲为”的 GIF(开源)

    SnailDev.GifMaker 一个生成gif并添加自定义字幕的工具 client 微信小程序 server nodejs + express 欢迎 star&fork 如果您有好的com ...

  8. Centos7.6 在LNMP上部署禅道

    一.下载禅道,并传到你的服务器上面的/opt文件下. http://dl.cnezsoft.com/zentao/7.3/ZenTaoPMS.7.3.stable.zbox_64.tar.gz 二.使 ...

  9. web渗透测试基本步骤

       基本常见步骤: 一 .信息收集 要检测一个站首先应先收集信息如whois信息.网站真实IP.旁注.C段网站.服务器系统版本.容器版本.程序版本.数据库类型.二级域名.防火墙.维护者信息有哪些等等 ...

  10. Swift 里 Dictionary

    Dictionary uses two storage schemes: native storage and Cocoa storage. 只看 native storage 的,也就是和 OC 无 ...