POJ 3678 Katu Puzzle (2-SAT)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 11429 | Accepted: 4233 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR
Sample Output
YES
Hint
#include<iostream>
#include<vector>
#include<stack>
#include<cstdio>
using namespace std;
int n,m;
vector<int>u[200024];
stack<int>st;
int dfn[200024],sig,low[200024],color[20024],index;
bool book[200024];
void init()
{
scanf("%d%d",&n,&m);
char s[10];
int x,y,c;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&c);
scanf("%s",s);
if(s[0]=='A'){
if(c==1){
u[y].push_back(y+n);//不理解
u[x].push_back(x+n);//不理解
}
if(c==0){
u[x+n].push_back(y);
u[y+n].push_back(x);
}
}
else if(s[0]=='X'){
if(c==1){
u[x+n].push_back(y);
u[x].push_back(y+n);
u[y+n].push_back(x);
u[y].push_back(x+n);
}
if(c==0){
u[x+n].push_back(y+n);
u[x].push_back(y);
u[y+n].push_back(x+n);
u[y].push_back(x);
}
}
else if(s[0]=='O'){
if(c==1){
u[x].push_back(y+n);
u[y].push_back(x+n);
}
if(c==0){
u[y+n].push_back(y);//不理解
u[x+n].push_back(x);//不理解
}
} }
} void tarjan(int t)
{
dfn[t]=low[t]=++index;
book[t]=true;
st.push(t);
int siz=u[t].size();
for(int i=0;i<siz;i++){
if(!dfn[u[t][i]]){
tarjan(u[t][i]);
low[t]=min(low[t],low[u[t][i]]);
}
if(book[u[t][i]]){
low[t]=min(low[t],low[u[t][i]]);
}
}
int miui;
if(dfn[t]==low[t]){
sig++;
while(true){
if(st.empty()){break;}
miui=st.top();
st.pop();
book[miui]=false;
color[miui]=sig;
if(miui==t){break;}
}
}
} bool solve()
{
for(int i=0;i<n;i++){
if(!dfn[i]){
tarjan(i);
}
} for(int i=0;i<n;i++){
if(color[i]==color[i+n]&&color[i]!=0){
return false;
}
}
return true;
} int main()
{
init();
if(solve()){
printf("YES\n");
}
else printf("NO\n");
}
POJ 3678 Katu Puzzle (2-SAT)的更多相关文章
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- POJ 3678 Katu Puzzle (经典2-Sat)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6553 Accepted: 2401 Descr ...
- POJ 3678 Katu Puzzle(强连通 法)
题目链接 题意:给出a, b, c 和操作类型 (与或异或),问是否满足所有的式子 主要是建图: 对于 and , c == 1: 说明 a 和 b都是1,那么 0 就不能取, a' -> a ...
- POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9987 Accepted: 3741 Descr ...
- POJ 3678 Katu Puzzle (2-SAT,常规)
题意:给出n个点,每个点上有一个数字可以0或1,然后给出m条限制,要求a和b两个点上的数字满足 a op b = c,op和c都是给定.问是否能够有一组解满足所有限制?(即点上的数字是0是1由你决定) ...
- poj 3678 Katu Puzzle(2-sat)
Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...
- poj 3678 Katu Puzzle 2-SAT 建图入门
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- poj 3678 Katu Puzzle(Two Sat)
题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...
- POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan
http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...
随机推荐
- PHP金额工具类之将阿利伯数字转换为大写中文数字
1.将阿拉伯数字转换为中文大写数字 <?php namespace core\components; class PriceHelper extends \yii\base\Component{ ...
- 怎样利用ADO中的adoquery进行缓存更新?????(100分)
我用BDE时,用query与updatesql相结合进行缓存更新,但是在ADO中没有updatesql,只有用adoquery,在DBGRID中,用CANCELUPADTE,只能取消一条记录,烦恼不已 ...
- Java多线程之实现Runnable接口
package org.study2.javabase.ThreadsDemo.runnable; /** * @Auther:GongXingRui * @Date:2018/9/18 * @Des ...
- 思路:当一个表嵌套另一个表时候 只需在dao中引入该mapper即可 进行正常的数据插入 查询 修改等
- nginx POSTREAD阶段模块
L:50 Realip模块 需要将--with-http_realip_model 编译进Nginx 因为nginx有可能有反向代理 获取到的客户端ip就不是原用户IP了 X-Forwarded-Fo ...
- pip 解决下载包速度慢的问题
对于Python开发用户来讲,PIP安装软件包是家常便饭.但国外的源下载速度实在太慢,浪费时间.而且经常出现下载后安装出错问题.所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安装成 ...
- 洛谷3822 [NOI2017] 整数 【线段树】【位运算】
题目分析: 首先这题的询问和位(bit)有关,不难想到是用线段树维护位运算. 现在我们压32位再来看这道题. 对于一个加法操作,它的添加位置可以得到,剩下的就是做不超过32的位移.这样根据压位的理论. ...
- 【BZOJ3669】【NOI2014】魔法森林 LCT
题目描述 给你一个\(n\)个点\(m\)条边的图,每条边有两个边权\(a,b\).请你找出从\(1\)到\(n\)一条路径,使得这条路径上边权\(a\)的最大值\(+\)边权\(b\)的最大值最小. ...
- 解决nginx发布网站跨目录访问
解决nginx发布网站跨目录访问(thinkphp5+lnmp) 到:usr/local/nginx/conf/vim fastcgi.cof 把最后一行加上井号#注释掉保存重启 restart 参考 ...
- Hdoj 2602.Bone Collector 题解
Problem Description Many years ago , in Teddy's hometown there was a man who was called "Bone C ...