HDU1659-GCD-容斥原理
从1-a和1-b种选两个数xy,计算出令gcd(x,y)=k的xy的对数。
对于每一个i∈[1,b]使用solve(i,n)函数解决有几个j∈[1,n]使gcd(x,y)=k。然后累加solve(i,n)-solve(i,i)即可,注意边界情况。
solve函数则使用容斥原理。
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std; const int maxn = ;
int T,a,b,c,d,k;
long long ans;
int prime[maxn]; void init()
{
for(int i=;i<=maxn;i++)
{
if(!prime[i]) prime[++prime[]] = i;
for(int j=;j<=prime[]&&prime[j]<=maxn/i;j++)
{
prime[prime[j]*i] = ;
if(i%prime[j]==) break;
}
}
} int factor[];
int fatCnt; int getFactors(int x)
{
fatCnt = ;
int tmp = x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
if(tmp%prime[i] == )
{
factor[fatCnt] = prime[i];
while(tmp%prime[i] == )
{
tmp/=prime[i];
//factor[fatCnt] *= prime[i];
}
fatCnt++;
}
}
if(tmp != )
{
factor[fatCnt++] = tmp;
}
return fatCnt;
} long long solve(int x,int n)
{
int np = getFactors(x);
int cnt,lcm;
long long res = n/k; //printf("x=%d n=%d np=%d \n",x,n,np);
for(int i=;i<(<<np);i++)
{
cnt=;lcm=;
int flag = ;
for(int j=;j<fatCnt;j++)
{
if((<<j) & i)
{
lcm *= factor[j];
cnt++;
}
}
lcm *= k;
cnt++; if(cnt&)
res += n/lcm;
else
res -= n/lcm;
}
//printf("res=%d\n",res);
return res;
} int main()
{
scanf("%d",&T);
init();
for(int kase=;kase<=T;kase++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",kase);
if(k == ) {printf("0\n");continue;}
if(d > b) swap(d,b); ans = ;
for(int i=c;i<=d;i++) if(i%k == )
{
ans += (solve(i/k,b)-solve(i/k,i));
if(i == k) ans++;
}
printf("%lld\n",ans);
}
}
HDU1659-GCD-容斥原理的更多相关文章
- 51nod 1678 lyk与gcd | 容斥原理
51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...
- HDU 1695 GCD#容斥原理
http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...
- hdu1695 GCD 容斥原理
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) ...
- SCUT - 157 - CC和他的GCD - 容斥原理
https://scut.online/p/157 鉴于多年(都没几个月)搞数论的经验,这种时候枚举g肯定是对的. 那么肯定是要莫比乌斯函数作为因子,因为很显然? 但是为什么要搞个负的呢?其实是因为这 ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU1695 GCD (欧拉函数+容斥原理)
F - GCD Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- HDU 1695 GCD (容斥原理+欧拉函数)
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...
- UVa 1393 (容斥原理、GCD) Highways
题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围 ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- GCD(关于容斥原理)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
随机推荐
- 用asp.net core 把用户访问记录优化到极致
菜菜呀,前几天做的用户空间,用户反映有时候比较慢呀 CEO,CTO,CFO于一身的CXO 是吗? 菜菜 我把你拉进用户反馈群,你解决一下呀 CEO,CTO,CFO于一身的CXO (完了,以后没清净时候 ...
- H5 类选择器
10-类选择器 错误的写法: --> 迟到毁一生 早退穷三代 按时上下班 必成高富帅 我是段落 我是段落 <!DOCTYPE html> <html lang="en ...
- 牛客练习赛35 C.函数的魔法
链接 [https://ac.nowcoder.com/acm/contest/32] 题意 题目描述 一位客人来到了此花亭,给了女服务员柚一个数学问题:我们有两个函数,F(X)函数可以让X变成(XX ...
- Mike and palindrome CodeForces - 798A
题目链接 一个简单的题目,但是却很少有人可以一次AC,比如我就瞎写wa了一次... 写本博算个教训录吧. 题目给出一个字符串,让你严格的改变一个字符使改变后的字符串是一个回文串. 回文串不用解释了.不 ...
- MySQL 深入浅出数据库索引原理(转)
本文转自:https://www.cnblogs.com/aspwebchh/p/6652855.html 前段时间,公司一个新上线的网站出现页面响应速度缓慢的问题, 一位负责这个项目的但并不是搞技术 ...
- #Leetcode# 985. Sum of Even Numbers After Queries
https://leetcode.com/problems/sum-of-even-numbers-after-queries/ We have an array A of integers, and ...
- TCP 握手和挥手图解(有限状态机)
1.引言 TCP 这段看过好几遍,老是记不住,没办法找工作涉及到网络编程这块,各种问 TCP .今天好好整理一下握手和挥手过程.献给跟我一样忙碌,找工作的童鞋,欢迎大神批评指正. 2.TCP 的连接建 ...
- jenkins 插件介绍
1.jenkins 利用maven编译,打包,所需插件:Maven Integration: Maven集成插件这个插件提供了Jenkins和Maven的深度集成,无论是好还是坏:项目之间的自动触发取 ...
- [转帖]dd命令详解
dd命令详解 https://czmmiao.iteye.com/blog/1748748 之前一直对linux的命令很恐惧 现在发现 其实不是那么复杂 要仔细学习就可以了 比如 dd = disk ...
- Sigma Function
做完这道题,我明白了人生的一个巨大道理,那就是: 其他题研究两下,做出来几百行.数论码字前研究半天,做出来十几二十行.做完特别没有成就感... 首先说下这题题意:首先,定义一个函数f[n],即为他所有 ...