为了记住并提醒自己阅读文献,进行了记录(这些论文都是我看过理解的),论文一直在更新中。
博一上学期:
1.week 6,2017.10.16
2014-Automatic Semantic Modeling of Indoor Scenes from Low-quality RGB-D Data using Contextual
Tsinghua University, Cardiff University(清华大学,英国卡迪夫大学)
期刊来源:ACM Transaction on Graphic
2.week 7,2017.10.9
2014-Annotating RGBD images of indoor scene
期刊来源:SIGGRAPH Asia 2014 Indoor Scene Understanding Where Graphics Meets Vision. ACM
3.week 8,2017.10.23
2016-Discovering overlooked objects: Context-based boosting of object detection in indoor scene
期刊来源:Pattern recognition letter
4.week 9,2017.10.30
2016-FuseNet Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture
期刊来源:Asian Conference on Computer Vision , 2016 :213-228
5.week10, 2017.11.8
2015-3D ShapeNets A Deep Representation for Volumetric Shape Modeling
Princeton University ,Chinese University of Hong Kong, Massachusetts Institute of Technology(普林斯顿大学,香港中文大学,麻省理工学院)
期刊来源:Wu Z, Song S, Khosla A, et al. 3d shapenets: A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1912-1920.
6.week 12, 2017.11.20
2016-A Point Set Generation Network for 3D Object Reconstruction from a Single Image
Tsinghua University,Stanford University(清华大学,斯坦福大学)
期刊来源:Fan H, Su H, Guibas L. A point set generation network for 3d object reconstruction from a single image[J].cvpr,2017.
7.week 13,16, 2017.11.27,2017.12.18
2016-Unsupervised 3D Local Feature Learning by Circle Convolutional Restricted Boltzmann Machine
Northwestern Polytechnical University(西北工业大学)
期刊来源:Han Z, Liu Z, Han J, et al. Unsupervised 3d local feature learning by circle convolutional restricted boltzmann machine[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5331-5344.
8.week 17, 2017.12.25
2017-Perspective Transformer Nets_ Learning Single-View 3D Object Reconstruction without 3D Supervise
University of Michigan, Ann Arbor, Adobe Research, Google Brain(美国密歇根大学安阿伯分校,Adobe Research,Google大脑)
期刊来源:Yan X, Yang J, Yumer E, et al. Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision[C]//Advances in Neural Information Processing Systems. 2016: 1696-1704.
9.week18,2018.1.3
2016-Spatial Transformer Network
Google DeepMind, London, UK
期刊来源:Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. 2015: 2017-2025.
文章理解:http://download.csdn.net/my
10.week19,2018.1.8
2017-Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image
Carnegie Mellon University(美国卡内基·梅隆大学)
期刊来源:Kong C, Lin C H, Lucey S. Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:5603-5611.
2017-Compact Model Representation for 3D Reconstruction
Carnegie Mellon University, Queensland University of Technology(美国卡内基·梅隆大学,澳洲昆士兰科技大学)
期刊来源:Pontes J K, Kong C, Eriksson A, et al. Compact Model Representation for 3D Reconstruction[J]. 3DV,2017.
11.week20,2018.1.15
2017-Image2Mesh A Learning Framework for Single Image 3D Reconstruction
Queensland University of Technologyy, Carnegie Mellon University(澳洲昆士兰科技大学,美国卡内基·梅隆大学)
期刊来源:Pontes J K, Kong C, Sridharan S, et al. Image2Mesh: A Learning Framework for Single Image 3D Reconstruction[J]. 2017.
12.week21,2018.1.22
2018-Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction
Carnegie Mellon University
期刊来源:Lin C H, Kong C, Lucey S. Learning efficient point cloud generation for dense 3D object reconstruction[J]. AAAI, 2018.
13.week22,2018.1.29
2016-Multi-view 3D Models from Single Images with a Convolutional Network
University of Freiburg(德国弗赖堡大学)
期刊来源:Tatarchenko M, Dosovitskiy A, Brox T. Multi-view 3d models from single images with a convolutional network[C]//European Conference on Computer Vision. Springer, Cham, 2016: 322-337.
2015-Deep convolutional inverse graphics network
Computer Science and Artificial Intelligence Laboratory, MIT(麻省理工学院,计算机科学与人工智能实验室)
Brain and Cognitive Sciences, MIT(麻省理工学院,脑和认知科学)
Microsoft Research Cambridge, UK(英国剑桥,微软研究院)
期刊来源:Kulkarni T D, Whitney W F, Kohli P, et al. Deep convolutional inverse graphics network[C]//Advances in Neural Information Processing Systems. 2015: 2539-2547.
- phd文献阅读日志-博一下学期
博一下学期: 1.week1,2018.2.26 2006-Extreme learning machine: theory and applications 期刊来源:Huang G B, Zhu ...
- 【软件工程1916|W(福州大学)_助教博客】2019年上学期期末问卷调查结果公示
1.调查问卷概况 福州大学2019W班,收集到有效答卷44份 2. 调查问卷情况 Q1:请问你平均每周在课程上花费多少小时? 去除自估水平超过40小时的,平均16.6H Q2.软工实践的各次作业分别花 ...
- 文献阅读笔记——group sparsity and geometry constrained dictionary
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...
- Week2-作业1:阅读与博客
Week2-作业1:阅读与博客 第一章 :概论 1. 原文如下: 移山公司程序员阿超的宝贝儿子上了小学二年级,老师让家长每天出30道加减法题目给孩子做.阿超想写一个小程序来做这件事,具体实现可以采用很 ...
- 此文记录了我从研二下学期到研三上学期的找工历程,包括百度、腾讯、网易、移动、电信、华为、中兴、IBM八家企业的面试总结和心得--转
感谢电子通讯工程的研究生学长为大家整理了这么全面的求职总结,希望进入通信公司和互联网公司做非技术类岗位的学弟学妹们千万不要错过哦~ ---------------------------原文分割线-- ...
- 文献阅读 | The single-cell transcriptional landscape of mammalian organogenesis | 器官形成 | 单细胞转录组
The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想 ...
- 小飞淙在博客上的第一天——NOIP201505转圈游戏
原本我是在word文档上写这种东西的,在杨老师的“强迫”下,我开始写了博客. 这是我在博客上的第一天,就先来个简单的,下面请看题: 试题描述 有n个小伙伴(编号从0到n-1)围坐一圈玩游戏.按照顺时 ...
- 复习上学期的HTML+CSS(1)
自己跟着网上教程复习上学期的HTML+CSS,因为已经忘得差不多了,而且现在学的js也要以HTML+CSS为基础,坚持每天持续更新. n B/S 网络结构 Browser/Server 浏览器/ ...
- wordpress如何利用插件添加优酷土豆等视频到自己的博客上
wordpress有时候需要添加优酷.土豆等网站的视频到自己的博客上,传统的分享方法不能符合电脑端和手机端屏幕大小的需求,又比较繁琐,怎样利用插件的方法进行添加呢,本视频向你介绍一款这样的插件——Sm ...
随机推荐
- Asp.net页面中调用soapheader进行验证的操作步骤
Asp.net页面中调用以SOAP头作验证的web services操作步骤 第一步:用来作SOAP验证的类必须从SoapHeader类派生,类中Public的属性将出现在自动产生XML节点中,即: ...
- LeetCode: Search Insert Position 解题报告
Search Insert Position Given a sorted array and a target value, return the index if the target is fo ...
- Lintcode: Implement Queue by Stacks 解题报告
Implement Queue by Stacks 原题链接 : http://lintcode.com/zh-cn/problem/implement-queue-by-stacks/# As th ...
- maven 打包时提示 软件包 xxxxxxx 不存在
右键项目->MAVEN->Update Project Configuration然后clean相关项目再打包如果还不行 在你关联包的路径下 把所有文件删掉 在打包的时候会重新下载 ...
- 进入Linux救援(rescue)模式的四大法门
原文:http://blog.51cto.com/xxrenzhe/1272838 适用场景: 当误操作修改系统启动文件/etc/fstab, /etc/rc.d/rc.sysinit时,就会造成系统 ...
- Notepad++的右键菜单
这种方法可以重复利用,如果下次它又消失了,你可以再导入一次就OK了.比如我们创建一个叫 notepad++.reg的文件,将下面的内容拷贝进去保存 Windows Registry Editor Ve ...
- 使用DbUtils对JDBC封装实现面向实体查询
直接上代码 package org.smart4j.chapter2.helper; import org.apache.commons.dbcp2.BasicDataSource; import o ...
- C#使用BeginInvoke和EndInvoke异步下载和获取返回结果
场景:为了防止UI卡死,使用异步下载文件 问题:采用多线程下载,关闭窗口后下载线程不能停止,线程操作麻烦. 参考:C#客户端的异步操作: http://www.cnblogs.com/fish-li/ ...
- SQL复制表操作
select * into tb1 from tb2 insert into tb1 (fld1, fld2) select fld1, 0 from tb2 where fld0='x' 以上两句 ...
- <[成长股基本面]【怎样选择成长股】>读书笔记
书在这里 投资想赚大钱,必须有耐性 这家公司的产品或服务有没有充分的市场潜力,至少几年内营业额能否大幅成长? 为了进一步提高总体销售水平,发现新的产品增长点,管理层是不是决心继续开发新产品或新工艺? ...