Luogu 3245 大数

  • 开始就想 \(10\) 进制 \(hash\) ,\(Hash(r)\equiv Hash(l-1)\cdot 10^{r-l+1}\) ,感觉没什么美妙的性质啊...
  • 然后把 \(hash\) 换个方向,先加低位,再加高位,就成了 \(\frac {Hash(l)-Hash(r+1)} {10^{n-r}}\equiv 0\) ,似乎,就很美妙了?
  • 当 \(P\not=2,5\) 时,下面的分母有逆元,那么只能是 \(Hash(l)\equiv Hash(r+1)\) ,就变成了在一段区间内问相同元素的对数,离散化之后,用莫队可以解决.
  • 当 \(P=2,5\) 时,一段区间内仅有以 \(P,0\) 结尾的串符合条件,计数相当简单.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=1e5+10;
int n,m,P;
inline int add(int a,int b)
{
return (a + b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
struct query
{
int l,r,id,bel;
bool operator < (const query &rhs) const
{
if(bel!=rhs.bel)
return bel<rhs.bel;
if(r!=rhs.r)
return r<rhs.r;
return l<rhs.l;
}
}q[MAXN];
char buf[MAXN];
int Hash[MAXN],cp[MAXN];
int cnt[MAXN];
ll ans[MAXN],res;
void add(int x)
{
res+=cnt[Hash[x]];
++cnt[Hash[x]];
}
void rem(int x)
{
--cnt[Hash[x]];
res-=cnt[Hash[x]];
}
int sumcnt[MAXN],sumpos[MAXN];
void solve_spj()
{
for(int i=1;i<=n;++i)
{
if(buf[i]-'0'==0 || buf[i]-'0'==P)
sumcnt[i]=1,sumpos[i]=i;
sumcnt[i]+=sumcnt[i-1];
sumpos[i]+=sumpos[i-1];
}
m=read();
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
ll cntsum=sumcnt[r]-sumcnt[l-1],possum=sumpos[r]-sumpos[l-1];
ll res=possum-1LL*(l-1)*cntsum;
printf("%lld\n",res);
}
}
int main()
{
P=read();
scanf("%s",buf+1);
n=strlen(buf+1);
if(P==2 || P==5)
{
solve_spj();
return 0;
}
int pow10=1;
for(int i=n;i>=1;--i)
{
cp[i]=Hash[i]=add(Hash[i+1],mul(buf[i]-'0',pow10));
pow10=mul(pow10,10);
}
++n;//0
sort(cp+1,cp+1+n);
int tot=unique(cp+1,cp+1+n)-cp-1;
for(int i=1;i<=n;++i)
Hash[i]=lower_bound(cp+1,cp+1+tot,Hash[i])-cp;
m=read();
int BlockSize=sqrt(m);
for(int i=1;i<=m;++i)
{
q[i].l=read();
q[i].r=read();
q[i].id=i;
q[i].bel=q[i].l/BlockSize;
}
sort(q+1,q+1+m);
int L=1,R=0;
for(int i=1;i<=m;++i)
{
int l=q[i].l,r=q[i].r;
++r;
if(l==r)
continue;
while(R<r)
add(++R);
while(L<l)
rem(L++);
while(L>l)
add(--L);
while(R>r)
rem(R--);
ans[q[i].id]=res;
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans[i]);
return 0;
}

Luogu 3245 大数的更多相关文章

  1. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

  2. luogu P3245 [HNOI2016]大数

    传送门 \(HNOI2019\)前最后一题了qwq 这题要分情况,如果\(p=2\)或\(5\),那么只要区间内最后一个数字是\(p\)的倍数就好了,这个可以莫队,也有更优秀的做法.莫队做法可以看代码 ...

  3. Luogu 3332 [ZJOI2013]K大数查询

    BZOJ 3110 很早就想写的试炼场题. 不会整体二分啊呜呜呜,只能写写树套树. 有一个trick就是外层使用一个权值线段树,把位置作为下标的线段树放在内层,这样子的话我们在查询$k$大的时候就可以 ...

  4. 【Luogu】P3332K大数查询(树套树)

    题目链接 这题我费尽心思不用标记永久化终于卡过去了qwq 权值线段树下面套一个区间线段树.然后乱搞搞即可. // luogu-judger-enable-o2 #include<cstdio&g ...

  5. [HNOI 2016]大数

    Description 题库链接 给你一个长度为 \(n\) ,可含前导零的大数,以及一个质数 \(p\) . \(m\) 次询问,每次询问你一个大数的子区间 \([l,r]\) ,求出子区间中有多少 ...

  6. 【树状数组套主席树】带修改区间K大数

    P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+ ...

  7. [ZJJOI2013]K大数查询 整体二分

    [ZJJOI2013]K大数查询 链接 luogu 思路 整体二分. 代码 #include <bits/stdc++.h> #define ll long long using name ...

  8. 洛谷P1050 循环【java大数】

    题目:https://www.luogu.org/problemnew/show/P1050 题意:给定一个数$n$,问$n$的幂次的最低$k$位的循环节是多少. 思路:这真是我做过最难的java大数 ...

  9. 洛谷P1080 国王游戏【大数】【贪心】

    题目:https://www.luogu.org/problemnew/show/P1080 题意: 一个国王和n个大臣,每个人左右手上都有一个数值. 现在将国王排在队首,将大臣进行排序.每个大臣的值 ...

随机推荐

  1. Cglib方法实现动态代理

    除了使用JDK方式产生动态代理外,Java还给我们提供了另外一种产生动态代理的方法,那就是使用cglib. cglib是这样实现动态代理的: · ①.针对类来实现代理 · ②对指定目标类产生一个子类 ...

  2. 《剑指offer》第二十九题(顺时针打印矩阵)

    // 面试题29:顺时针打印矩阵 // 题目:输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字. #include <iostream> void PrintMatrixInC ...

  3. springboot实现java代理IP池 Proxy Pool,提供可用率达到95%以上的代理IP

    一.背景 前段时间,写java爬虫来爬网易云音乐的评论.不料,爬了一段时间后ip被封禁了.由此,想到了使用ip代理,但是找了很多的ip代理网站,很少有可以用的代理ip.于是,抱着边学习的心态,自己开发 ...

  4. nothing added to commit but untracked files present.

    当我们使用git的时候 如果我们在工作区修改了某些文件而没有新增文件,可以直接用: $ git commit --all -m "备注信息"                  -- ...

  5. PaodingAnalysis 提示 "dic home should not be a file, but a directory"

    Exception in thread "main" net.paoding.analysis.exception.PaodingAnalysisException: dic ho ...

  6. 65. Valid Number *HARD*

    Validate if a given string is numeric. Some examples:"0" => true" 0.1 " => ...

  7. Oracle12c中性能优化新特性之新增APPROX_COUNT_DISTINCT 快速唯一值计数函数

    Oracle11g中,为了改善DBMS_STATS包收集统计信息时的唯一值计数功能,增加了 APPROX_COUNT_DISTINCT函数,但文档中未记载.Oracle12c文档中包括了该函数,因此, ...

  8. SMTP 通过 ssh 通道发送垃圾邮件

    通过SSH隧道传输SMTP 根据设计,我们不允许校外机器使用我们的SMTP服务器.如果我们允许它,我们将允许任何和所有使用我们的SMTP服务器来分发垃圾邮件.但是也可以通过我们的SMTP服务器发送邮件 ...

  9. 管道pipe与dup结合使用

    前面的例子中,子进程可以直接共享父进程的文件描述符.但是如果子进程调用exec函数执行另一个应用程序时,就不能再共享了. 这种情况下可以将子进程中的文件描述符重定向到标准输入,当新执行的程序从标准输入 ...

  10. Mybatis学习总结-----mybatis中refid是什么意思(十)

    1.首先定义一个sql标签,一定要定义唯一id<sql id="Base_Column_List" >name,age</sql>2.然后通过id引用< ...