poj 2125 Destroying The Graph 最小割+方案输出
构图思路:
1.将所有顶点v拆成两个点, v1,v2
2.源点S与v1连边,容量为 W-
3.v2与汇点连边,容量为 W+
4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大
则该图的最小割(最大流)即为最小花费。
简单证明: 根据ST割集的定义,将顶点分成两个点集。所以对于原图中的边(a,b),转换成 S->a1->b2->T. 则此时路径必定存在
一条割边,因为a1->b2为无穷大,所以割边必定是 S->a1 or b2->T, 若为前者则意味着删除a顶点的W-,后者则是b顶点的W+.
所以该图最小割即为最小花费。
计算方案: 对于构图后跑一次最大流,然后对于残留网络进行处理,首先从源点S出发,标记所有能访问到的顶点,这些顶点即为S割点集中
的顶点。 其他则为T集合中顶点, 然后从所有边中筛选出( A属于S,B属于T,且(A,B)容量为0 )的边,即为割边。因为我们的W+/W-边都只有一条,
且都分开了。比较容易处理。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<string>
#include<vector>
#include<algorithm>
using namespace std; const int MAXN = ;
const int MAXM = ;
const int inf = 0x3f3f3f3f;
int A[MAXN], B[MAXN];
struct Edge{
int u, v, f, nxt;
}edge[];
int head[MAXN], idx;
int n, m;
int S, T, N; void AddEdge(int u,int v,int f){
edge[idx].u = u, edge[idx].v = v, edge[idx].f = f;
edge[idx].nxt = head[u]; head[u] = idx++;
edge[idx].u = v, edge[idx].v = u, edge[idx].f = ;
edge[idx].nxt = head[v]; head[v] = idx++;
} int h[MAXN], vh[MAXN];
int dfs(int u,int flow){
if(u == T) return flow;
int tmp = h[u]+, sum = flow;
for(int i = head[u]; ~i; i = edge[i].nxt){
if( edge[i].f && (h[edge[i].v]+ == h[u]) ){
int p = dfs( edge[i].v, min(sum,edge[i].f));
edge[i].f-=p, edge[i^].f+=p, sum-=p;
if( sum== || h[S]==N ) return flow-sum;
}
}
for(int i = head[u]; ~i; i = edge[i].nxt)
if( edge[i].f ) tmp = min( tmp, h[edge[i].v] );
if( --vh[ h[u] ] == ) h[S] = N;
else ++vh[ h[u]=tmp+ ];
return flow-sum;
}
int sap(){
int maxflow = ;
memset(h,,sizeof(h));
memset(vh,,sizeof(vh));
vh[] = N;
while( h[S] < N ) maxflow += dfs( S, inf );
return maxflow;
} bool vis[MAXN];
int res[MAXM]; void DFS(int u ){
vis[u] = true;
for(int i = head[u]; ~i; i = edge[i].nxt ){
int v = edge[i].v;
if( !vis[v] && edge[i].f )
DFS( v );
}
}
void solve(){
int maxflow = sap();
printf("%d\n", maxflow );
memset( vis,,sizeof(vis));
DFS( S ); int cnt = ;
for(int i = ; i < idx; i += ){
int u = edge[i].u, v = edge[i].v;
if( vis[u] && !vis[v] && (edge[i].f == ) )
res[cnt++] = i;
}
printf("%d\n", cnt );
for(int i = ; i < cnt; i++ ){
int u = edge[ res[i] ].u, v = edge[ res[i] ].v;
if( u == S ) printf("%d -\n", v);
else printf("%d +\n", u-n );
}
} int main(){
while( scanf("%d%d",&n,&m) != EOF ){
S = , T = *n+, N = *n+; idx = ;
memset( head, -, sizeof(head)); for(int i = ; i <= n; i++ )
scanf("%d", &A[i]);
for(int i = ; i <= n; i++ )
scanf("%d", &B[i]);
int a, b;
for(int i = ; i < m; i++ ){
scanf("%d%d", &a,&b);
AddEdge( a, n+b, inf );
}
for(int i = ; i <= n; i++){
AddEdge( S, i, B[i] ); // - out
AddEdge( n+i, T, A[i] );// + in
}
solve();
}
return ;
}
poj 2125 Destroying The Graph 最小割+方案输出的更多相关文章
- POJ 2125 Destroying The Graph [最小割 打印方案]
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8311 Accepted: 2 ...
- POJ - 2125 Destroying The Graph (最小点权覆盖)
题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- poj 2125 Destroying The Graph (最小点权覆盖)
Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS Memory Limit: 65536K ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- 图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph
Destroying The Graph Description Alice and Bob play the following game. First, Alice draws some di ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- ●POJ 2125 Destroying The Graph
题链: http://poj.org/problem?id=2125 题解: 最小割 + 输出割方案.建图:拆点,每个题拆为 i 和 i'分别表示其的入点和出点建立超源 S和超汇 T.S -> ...
- poj 3469 Dual Core CPU——最小割
题目:http://poj.org/problem?id=3469 最小割裸题. 那个限制就是在 i.j 之间连双向边. 根据本题能引出网络流中二元关系的种种. 别忘了写 if ( x==n+1 ) ...
随机推荐
- MySQL 字符串拼接详解
在Mysql 数据库中存在两种字符串连接操作.具体操作如下一. 语法: 1. CONCAT(string1,string2,…) 说明 : string1,string2代表字符串,conca ...
- linux环境中通过useradd命令,创建用户的时候指定用户的base-dir
需求说明: 今天一个同事,问了一个这样的问题,在linux环境中,创建用户的时候,默认的是在/home目录下创建一个与用户名相同的家目录, 如何能够将这个/home更换成一个其他的,比如/opt/ap ...
- ./configure、make、make install 命令
https://www.cnblogs.com/tinywan/p/7230039.html https://www.sohu.com/a/191735643_505857 ./configure 该 ...
- java okhttp包的类特点
1.开始使用这个包时候不习惯,觉得api用起来很别扭,不管是Request okhttpClient formBody只要是设置啥,就必须使用类里面的Builder类,然后一个方法接受一个参数,不停地 ...
- 【剑指Offer学习】【面试题23:从上往下打印二叉树】
题目:从上往下打印出二叉树的每一个结点,同一层的结点依照从左向右的顺序打印. 二叉树结点的定义: public static class BinaryTreeNode { int value; Bin ...
- iOS iTuns Connect官方配置教程
iTunes Connect 开发者指南 (iTunes Connect Developer Guide): https://developer.apple.com/library/ios/docum ...
- Python 统计代码量
#统计代码量,显示离10W行代码还有多远 #递归搜索各个文件夹 #显示各个类型的源文件和源代码数量 #显示总行数与百分比 import os import easygui as g #查找文件 def ...
- 【delphi】Delphi过程、函数传递参数的八种方式
Delphi过程函数传递参数的八种方式
- bootstrapValidator插件动态添加和移除校验
bootstrapValidator对动态生成的表单进行校验,需要调用方法:addField. 方法:addField(field,option); field可以是表单的name也可以是jQue ...
- 数据流-------C#文件和byte[]互换问题
今天使用FileInfo.CopyTo的时候出现问题,当然并不是使用的问题,而是一些细节. 不过报错的时候,一度让我认为,copyto这个方法,给的参数必须是文件夹,而不是文件.所以就有了下面的查找 ...