在F盘生成了一个文件名称为“文件夹”的文本文件。

第一步:批处理提取图像的一维颜色直方图,并保存到.xml中的featureHists

第一个參数:图像的路径

第二个參数:保存的.xml

#include<iostream>
#include<fstream>
#include<string>
using namespace std; #include<opencv2\imgproc\imgproc.hpp>
#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
using namespace cv; //计算一维直方图特征
Mat hist1d(const Mat& src); int main(int argc,char* argv[])
{
    if(argc !=3)
    {
        cerr << "Wrong Argument !" <<endl;
        return -1;
    }
    //定义文件流,仅仅能读取
    ifstream inPutFile(argv[1],ios::in);
    if(! inPutFile)
    {
        cerr << "File Open Erro !" <<endl;
        return -1;
    }
    //读取文件流中的每一行,并赋值给fileName。读取每一幅图像并显示
    string fileName ;
    Mat image;
    Mat featureHist;
    Mat featureHists;
    while (getline(inPutFile,fileName))
    {
        
        image = imread(fileName,1);
        //计算一维直方图特征
        featureHist = hist1d(image);
        //按行存储每一幅图像的一维直方图特征
        featureHists.push_back(featureHist);
    }
    //注意一定要记得关闭文件流
    inPutFile.close();     /*第五步。把图像特征保存到.xml文件里*/
    FileStorage fs(argv[2],FileStorage::WRITE);
    fs<<"featureHists"<<featureHists;
    fs.release();
    
    return 0;
} Mat hist1d(const Mat& src)
{
    Mat hsv;     //颜色空间的转换 BGR2HSV
    cvtColor(src,hsv,CV_BGR2HSV);     //把H通道分为60个bin
    int hbins = 60;
    int histSize[] = { hbins };     //H的取值范围 0-179
    float hranges[]= {0,180};
    const float* ranges [] ={hranges};     Mat hist1D,histRow,histRowDst;
    //我们依据图像的第一通道。计算一维直方图,并且输出的hist1D为32F
    int channels [] ={0};
    calcHist(&hsv,1,channels,Mat(),hist1D,1,histSize,ranges,true,false);
    //把直方图特征按一行来存储
    histRow=hist1D.reshape(1,1);     //把直方图归一化
    normalize(histRow,histRowDst,1,0,NORM_L1);     return histRowDst;
}

编译完毕后,进入命令行

然后,在F盘出现了一个features的.xml文件。里边存储了上述图像一维直方图特征。

—————————————————————————————————————————————————————————————————————————————

第二步:提取色卡的一维颜色直方图

#include<iostream>
#include<string>
using namespace std; #include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
#include<opencv2\imgproc\imgproc.hpp>
using namespace cv; int main(int argc,char* argv[])
{
Mat src = imread(argv[1],1);
if(! src.data)
{
cout <<"No Image" << endl;
return -1;
} Mat hsv;
//颜色空间的转换BGR2HSV
cvtColor(src,hsv,CV_BGR2HSV); //把H通道分为60个bin
int hbins = 60;
int histSize[] = { hbins }; //H的取值范围 0-179
float hranges[]= {0,180}; const float* ranges [] ={hranges};
Mat hist1D,histRow,histRowDst;
//我们依据图像的第一通道,计算一维直方图,并且输出的hist1D为32F
int channels [] ={0};
calcHist(&hsv,1,channels,Mat(),hist1D,1,histSize,ranges,true,false);
//把直方图特征按一行来存储
histRow=hist1D.reshape(1,1); //把直方图归一化
normalize(histRow,histRowDst,1,0,NORM_L1);
FileStorage fs(argv[2],FileStorage::WRITE);
//把histRowDst保存到.xml文件里
fs << argv[3] << histRowDst;
fs.release();
return 0;
}

分别各自提取他们的一维颜色直方图

然后,在F盘出现了四个.xml文件,分别存放了他们的颜色直方图信息

____________________________________________________________________________________________________________________________________

第三步:利用颜色卡的颜色直方图检索图像的颜色直方图

图像检索:一维直方图+欧几里得距离+flann+KNN的更多相关文章

  1. 图像检索:一维直方图+EMD距离

    EMD距离具体介绍已经在在这里已经给出. 思路:我们把一张图像的归一化的一维直方图作为signature的权值,也就是一般在比較两幅图像颜色直方图的EMD距离时,每一行的坐标一样,仅仅是权重值不一样. ...

  2. 图像检索:RGBHistogram+欧几里得距离|卡方距离

    RGBHistogram: 分别计算把彩色图像的三个通道R.G.B的一维直方图,然后把这三个通道的颜色直方图结合起来,就是颜色的描写叙述子RGBHistogram. 以下给出计算RGBHistogra ...

  3. Opencv Cookbook阅读笔记(四):用直方图统计像素

    灰度直方图的定义 灰度直方图是灰度级的函数,描述图像中该灰度级的像素个数(或该灰度级像素出现的频率):其横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率). #include <open ...

  4. opencv直方图均衡化

    #include <iostream> #include "highgui.h" #include "cv.h" #include "cx ...

  5. 灰度直方图及处理“cvQueryHistValue_1D”: 找不到标识符”的问题(上)

    // HIstogram.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "opencv2/opencv.hpp ...

  6. 彩色图像上执行Mean Shift迭代搜索目标 ,维加权直方图 + 巴氏系数 + Mean Shift迭代

    今天要给大家分享的是: 在彩色图像上进行Mean Shift迭代搜索目标 二维加权直方图+巴氏系数+Mean Shift迭代 关于 加权直方图.巴氏系数.Mean Shift迭代 这三者之间的关系请大 ...

  7. OPENCV直方图与匹配

    直方图可以用来描述不同的参数和事物,如物体的色彩分布,物体的边缘梯度模版以及目标位置的当前假设的概率分布. 直方图就是对数据进行统计的一种方法,并且将统计值定义到一系列定义好的bin(组距)中,获得一 ...

  8. OpenCV实现灰度直方图和直方图拉伸

    原文链接:http://blog.csdn.net/xiaowei_cqu/article/details/7600666 如有疑问或者版权问题,请移步原作者或者告知本人. 灰度直方图是数字图像中最简 ...

  9. opencv 7 直方图与匹配

    图像直方图概述 直方图的计算与绘制 计算直方图:calcHist()函数 找寻最值:minMaxLoc()函数 示例程序:绘制H-S直方图 #include "opencv2/highgui ...

随机推荐

  1. RV32C指令集

    Risc-V支持16位压缩格式,压缩格式立即数位数更少,能使用的寄存器也比较少,有些指令只能用常用8个整数寄存器(x8-x15)或者(f8-f15). 每个RVC指令都有对应的32位指令,下表列出所有 ...

  2. 我一直跑的分类LSTM模型原来是这一个,新闻分类网络

    原始的github可以参考这里: https://github.com/FudanNLP/nlpcc2017_news_headline_categorization 我的经验文章可以参考这里: ht ...

  3. 会动的文字Marquee应用(转)

    想要做个滚动公告,看了网上的教程,无一不是很恐怖的场频啊java语言编制的JS,或者就是各种复杂,无意中发现了Marquee这东西,用了一下,很简单,只需两行代码,即可以实现很好的效果,特此分享一下. ...

  4. JavaScript递归方法 生成 json tree 树形结构数据

    //递归方法 生成 json tree 数据 var getJsonTree = function(data, parentId) { var itemArr = []; for (var i = 0 ...

  5. python机器学习sklearn 岭回归(Ridge、RidgeCV)

    1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量 ...

  6. windows 使用 xxfpm 解决 php-cgi 进程自动关闭

    windows 下 php-cgi 进程处理一定数量的访问后,就会自动关闭,由于没办法直接让 php-cgi 进程支持更多的访问数量,所以只能启动多个进程来满足需求. xxfpm 是一个可执行程序,它 ...

  7. Linux Kernel 2:用户空间的初始化

    上篇我们知道,kernel初始化后将启动init进程,那么这个进程将干些什么呢?除此之外,kernel还需要做些什么事情呢?(想想文件系统.根存储设备是在什么时候初始化的呢?) 先从文件系统初始化说起 ...

  8. 转:Raft一致性选举算法的ppt与视频

    http://xiaorui.cc/2016/07/08/%E6%8A%80%E6%9C%AF%E5%88%86%E4%BA%AB-%E3%80%8A%E5%88%86%E5%B8%83%E5%BC% ...

  9. mybatis自定义枚举转换类

    转载自:http://my.oschina.net/SEyanlei/blog/188919 mybatis提供了EnumTypeHandler和EnumOrdinalTypeHandler完成枚举类 ...

  10. Your account already has a signing certificate for this machine but it is not present in your keycha

    转载自:https://blog.csdn.net/csdn2314/article/details/73124117 Your account already has a signing certi ...