一、Index Condition Pushdown(ICP)

Index Condition Pushdown (ICP)是mysql使用索引从表中检索行数据的一种优化方式,从mysql5.6开始支持,mysql5.6之前,存储引擎会通过遍历索引定位基表中的行,然后返回给Server层,再去为这些数据行进行WHERE后的条件的过滤。mysql 5.6之后支持ICP后,如果WHERE条件可以使用索引,MySQL 会把这部分过滤操作放到存储引擎层,存储引擎通过索引过滤,把满足的行从表中读取出。ICP能减少引擎层访问基表的次数和 Server层访问存储引擎的次数。

  • ICP的目标是减少从基表中读取操作的数量,从而降低IO操作

  • 对于InnoDB表,ICP只适用于辅助索引

  • 当使用ICP优化时,执行计划的Extra列显示Using indexcondition提示

  • 数据库配置 optimizer_switch="index_condition_pushdown=on”;

使用场景举例

辅助索引INDEX (a, b, c)

SELECT * FROM peopleWHERE a='12345' AND b LIKE '%xx%'AND c LIKE '%yy%';

若不使用ICP:则是通过二级索引中a的值去基表取出所有a='12345'的数据,然后server层再对b LIKE '%xx%'AND c LIKE '%yy%' 进行过滤

若使用ICP:则b LIKE '%xx%'AND c LIKE '%yy%'的过滤操作在二级索引中完成,然后再去基表取相关数据

ICP特点

  • mysql 5.6中只支持 MyISAM、InnoDB、NDB cluster

  • mysql 5.6中不支持分区表的ICP,从MySQL 5.7.3开始支持分区表的ICP

  • ICP的优化策略可用于range、ref、eq_ref、ref_or_null 类型的访问数据方法

  • 不支持主建索引的ICP(对于Innodb的聚集索引,完整的记录已经被读取到Innodb Buffer,此时使用ICP并不能降低IO操作)

  • 当 SQL 使用覆盖索引时但只检索部分数据时,ICP 无法使用

  • ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例

二、Multi-Range Read (MRR)

MRR 的全称是 Multi-Range Read Optimization,是优化器将随机 IO 转化为顺序 IO 以降低查询过程中 IO 开销的一种手段,这对IO-bound类型的SQL语句性能带来极大的提升,适用于range ref eq_ref类型的查询

MRR优化的几个好处

使数据访问有随机变为顺序,查询辅助索引是,首先把查询结果按照主键进行排序,按照主键的顺序进行书签查找

减少缓冲池中页被替换的次数

批量处理对键值的操作

在没有使用MRR特性时

第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

select key_column, pk_column from tb where key_column=x order by key_column

第二步 通过第一步获取的主键来获取对应的值

for each pk_column value in rest do:
select non_key_column from tb where pk_column=val

使用MRR特性时

第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

select key_column, pk_column from tb where key_column = x order by key_column

第二步 将结果集rest放在buffer里面(read_rnd_buffer_size 大小直到buffer满了),然后对结果集rest按照pk_column排序,得到结果集是rest_sort

第三步 利用已经排序过的结果集,访问表中的数据,此时是顺序IO.

select non_key_column fromtb where pk_column in (rest_sort)

在不使用 MRR 时,优化器需要根据二级索引返回的记录来进行“回表”,这个过程一般会有较多的随机IO, 使用MRR时,SQL语句的执行过程是这样的:

  • 优化器将二级索引查询到的记录放到一块缓冲区中

  • 如果二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

  • 用户线程调用MRR接口取cluster index,然后根据cluster index 取行数据

  • 当根据缓冲区中的 cluster index取完数据,则继续调用过程 2) 3),直至扫描结束

通过上述过程,优化器将二级索引随机的 IO 进行排序,转化为主键的有序排列,从而实现了随机 IO 到顺序 IO 的转化,提升性能

此外MRR还可以将某些范围查询,拆分为键值对,来进行批量的数据查询,如下:

SELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000AND key_part2 = 10000;

表t上有二级索引(key_part1, key_part2),索引根据key_part1,key_part2的顺序排序。

若不使用MRR:此时查询的类型为Range,sql优化器会先将key_part1大于1000小于2000的数据取出,即使key_part2不等于10000,带取出之后再进行过滤,会导致很多无用的数据被取出

若使用MRR:如果索引中key_part2不为10000的元组越多,最终MRR的效果越好。优化器会将查询条件拆分为(1000,1000),(1001,1000),... (1999,1000)最终会根据这些条件进行过滤

相关参数

当mrr=on,mrr_cost_based=on,则表示cost base的方式还选择启用MRR优化,当发现优化后的代价过高时就会不使用该项优化

当mrr=on,mrr_cost_based=off,则表示总是开启MRR优化

SET  @@optimizer_switch='mrr=on,mrr_cost_based=on';

参数read_rnd_buffer_size 用来控制键值缓冲区的大小。二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

三、Batched Key Access (BKA) 和 Block Nested-Loop(BNL)

Batched Key Access (BKA)  提高表join性能的算法。当被join的表能够使用索引时,就先排好顺序,然后再去检索被join的表,听起来和MRR类似,实际上MRR也可以想象成二级索引和 primary key的join

如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)

BKA原理

对于多表join语句,当MySQL使用索引访问第二个join表的时候,使用一个join buffer来收集第一个操作对象生成的相关列值。BKA构建好key后,批量传给引擎层做索引查找。key是通过MRR接口提交给引擎的(mrr目的是较为顺序)MRR使得查询更有效率。

大致的过程如下:

  • BKA使用join buffer保存由join的第一个操作产生的符合条件的数据

  • 然后BKA算法构建key来访问被连接的表,并批量使用MRR接口提交keys到数据库存储引擎去查找查找。

  • 提交keys之后,MRR使用最佳的方式来获取行并反馈给BKA

BNL和BKA都是批量的提交一部分行给被join的表,从而减少访问的次数,那么它们有什么区别呢?

  • BNL比BKA出现的早,BKA直到5.6才出现,而NBL至少在5.1里面就存在。

  • BNL主要用于当被join的表上无索引

  • BKA主要是指在被join表上有索引可以利用,那么就在行提交给被join的表之前,对这些行按照索引字段进行排序,因此减少了随机IO,排序这才是两者最大的区别,但是如果被join的表没用索引呢?那就使用NBL

BKA和BNL标识

Using join buffer (Batched Key Access)和Using join buffer (Block Nested Loop)

相关参数

BAK使用了MRR,要想使用BAK必须打开MRR功能,而MRR基于mrr_cost_based的成本估算并不能保证总是使用MRR,官方推荐设置mrr_cost_based=off来总是开启MRR功能。打开BAK功能(BAK默认OFF):

SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

BKA使用join buffer size来确定buffer的大小,buffer越大,访问被join的表/内部表就越顺序。

BNL默认是开启的,设置BNL相关参数:

SET optimizer_switch=’block_nested_loop’

支持inner join, outer join, semi-join operations,including nested outer joins

BKA主要适用于join的表上有索引可利用,无索引只能使用BNL

四、总结

ICP(Index Condition Pushdown

Index Condition Pushdown是用索引去表里取数据的一种优化,减少了引擎层访问基表的次数和Server层访问存储引擎的次数,在引擎层就能够过滤掉大量的数据,减少io次数,提高查询语句性能

MRR(Multi-Range Read

是基于辅助/第二索引的查询,减少随机IO,并且将随机IO转化为顺序IO,提高查询效率。

  • 不使用MRR之前(MySQL5.6之前),先根据where条件中的辅助索引获取辅助索引与主键的集合,再通过主键来获取对应的值。辅助索引获取的主键来访问表中的数据会导致随机的IO(辅助索引的存储顺序并非与主键的顺序一致),随机主键不在同一个page里时会导致多次IO和随机读。

  • 使用MRR优化(MySQL5.6之后),先根据where条件中的辅助索引获取辅助索引与主键的集合,再将结果集放在buffer(read_rnd_buffer_size 直到buffer满了),然后对结果集按照pk_column排序,得到有序的结果集rest_sort。最后利用已经排序过的结果集,访问表中的数据,此时是顺序IO。即MySQL 将根据辅助索引获取的结果集根据主键进行排序,将无序化为有序,可以用主键顺序访问基表,将随机读转化为顺序读,多页数据记录可一次性读入或根据此次的主键范围分次读入,减少IO操作,提高查询效率。

Nested Loop Join算法

将驱动表/外部表的结果集作为循环基础数据,然后循环该结果集,每次获取一条数据作为下一个表的过滤条件查询数据,然后合并结果,获取结果集返回给客户端。Nested-Loop一次只将一行传入内层循环, 所以外层循环(的结果集)有多少行, 内存循环便要执行多少次,效率非常差。


Block Nested-Loop Join
算法

将外层循环的行/结果集存入join buffer, 内层循环的每一行与整个buffer中的记录做比较,从而减少内层循环的次数。主要用于当被join的表上无索引。


Batched Key Access
算法

当被join的表能够使用索引时,就先好顺序,然后再去检索被join的表。对这些行按照索引字段进行排序,因此减少了随机IO。如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)。

参考:

http://dev.mysql.com/doc/refman/5.7/en/select-optimization.html

http://www.kancloud.cn/taobaomysql/monthly/117959

http://www.kancloud.cn/taobaomysql/monthly/67181

http://www.cnblogs.com/zhoujinyi/p/4746483.html

【mysql】关于ICP、MRR、BKA等特性的更多相关文章

  1. MySQL Index--BNL/ICP/MRR/BKA

    MySQL关联查询算法: BNL(Block Nested-Loop) ICP(Index Condition Pushdown) MRR(Multi-Range Read) BKA(Batched ...

  2. MySQL--BNL/ICP/MRR/BKA

    #======================================================##MySQL关联查询算法:BNL(Block Nested-Loop)ICP(Index ...

  3. MySQL · 特性分析 · 优化器 MRR & BKA【转】

    MySQL · 特性分析 · 优化器 MRR & BKA 上一篇文章咱们对 ICP 进行了一次全面的分析,本篇文章小编继续为大家分析优化器的另外两个选项: MRR & batched_ ...

  4. MySQL 8.0.2复制新特性(翻译)

    译者:知数堂星耀队 MySQL 8.0.2复制新特性 MySQL 8 正在变得原来越好,而且这也在我们MySQL复制研发团队引起了一阵热潮.我们一直致力于全面提升MySQL复制,通过引入新的和一些有趣 ...

  5. PostgreSQL 和 MySQL 在用途、好处、特性和特点上的异同

    PostgreSQL 和 MySQL 在用途.好处.特性和特点上的异同. PostgreSQL 和 MySQL 是将数据组织成表的关系数据库.这些表可以根据每个表共有的数据链接或关联.关系数据库使您的 ...

  6. 关于Mysql 的 ICP、MRR、BKA等特性

    一.ICP( Index_Condition_Pushdown) 对 where 中过滤条件的处理,根据索引使用情况分成了三种:(何登成)index key, index filter, table ...

  7. MySQL中有关icp mrr和bka的特性

    文辉考我的问题,有关这三个的特性,如果在面试过程中,个人见解可以答以下 icp MyQL数据库会在取出索引的同时,判断是否进行WHERE条件过滤,也就是把WHERE的部分过滤操作放在存储引擎层,在某些 ...

  8. ICP、MRR、BKA等特性

    一.Index Condition Pushdown(ICP) Index Condition Pushdown (ICP)是 mysql 使用索引从表中检索行数据的一种优化方式,从mysql5.6开 ...

  9. MRR,BKA,ICP相关

    MRR Multi-Range Read,多范围读,5.6以上版本开始支持 工作原理&优化效果: 将查询到的辅助索引结果放在一个缓冲(read_rnd_buffer_size = 4M)中 将 ...

随机推荐

  1. 不知不觉vs2012 update 4出来了

    今天早上起来原来看新闻说VISUAL STUIDO  2013 正式发布的日期是11月13日,今天打开微软VS2013下载页面,发现没有任何迹象,在浏览里面的新闻的时候发现了VS2012 UPDATA ...

  2. 自动化打包 Jenkins 持续集成 Git Gradle MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  3. pair练习

    /* 编写程序读入一些列string和int型数据,将每一组存储在一个pair对象中, 然后将这些pair对象存储在vector容器里. */ #include <iostream> #i ...

  4. Ubuntu14设置静态IP的地方

    sudo vim /etc/network/interfaces 修改如下部分: auto eth0iface eth0 inet staticaddress 192.168.0.117gateway ...

  5. ASP入门(二)-创建Access数据库

    通常来说,ASP程序是搭配Access数据库来使用的,因此在安装完ASP环境后,为了方便建立和管理数据库,我们还需要安装Access数据库. Access是Microsoft Office家族中的一员 ...

  6. maven 打包以及上传

    插件 ------------------------------------------------------------------------------------------------- ...

  7. beanshell

    http://www.beanshell.org/download.html

  8. Android:安装时提示:INSTALL_FAILED_INSUFFICIENT_STORAGE

    在将程序发布到手机上时提示该错误: INSTALL_FAILED_INSUFFICIENT_STORAGE 解决方法: 1. adb shell 2. #df # df df Filesystem   ...

  9. 014-Go Web 对pg增删改查测试

    1:data/data.go package data import( "fmt" "database/sql" _"github.com/lib/p ...

  10. SHELL AWK 循环求和

    1.简单求和,文件如下: [linux@test /tmp]$ cat test 123.52 125.54 126.36 求和: [linux@test /tmp]$ awk '{sum += $1 ...