主要学习如何把几种常用的数据格式导入到R中进行处理,并简单介绍如何把R中的数据保存为R数据格式和csv文件。

1、保存和加载R的数据(与R.data的交互:save()函数和load()函数)
a <- 1:10
save(a, file = "data/dumData.Rdata") # data文件为当前工作目录下的文件,必须存在
rm(a)
load("data/dumData.Rdata")
print(a)

2、导入和加载.csv文件(write.csv()函数和read.csv()函数)
var1 <- 1:5
var2 <- (1:5) / 10
var3 <- c("R", "and", "Data Mining", "Examples", "Case Studies")
a <- data.frame(var1, var2, var3)
names(a) <- c("VariableInt", "VariableReal", "VariableChar")
write.csv(a, "data/dummmyData.csv", row.names = FALSE)
b <- read.csv("data/dummmyData.csv")

3、导入SPSS/SAS/Matlab等数据集
# 导入spss的sav格式数据则要用到foreign扩展包,加载后直接用read.spss读取sav文件
library(foreign)
mydata=read.spss('d:/test.sav')
# 上面的函数在很多情况下没能将sav文件中的附加信息导进来,例如数据的label,
# 那么建议用Hmisc扩展包的spss.get函数,效果会更好一些。
library(Hmisc)
data=spss.get("D:/test.sav")

导入时候,如果报了这样的错误:
Unrecognized record type 7, subtype 24 encountered in system file
可以使用下面的这个包:
library(memisc)
data<-as.data.set(spss.system.file("D:/test.sav"))

4、导入数据库中的数据
library(RODBC)
Connection <- odbcConnect(dsn="servername",uid="userid",pwd="******")
Query <- "SELECT * FROM lib.table WHERE ..."
# Query <- readChar("data/myQuery.sql", nchars=99999) 或者选择从SQL文件中读入语句
myData <- sqlQuery(Connection, Query, errors=TRUE)
odbcCloseAll()

5、导入Excel数据
library(RODBC)
channel=odbcConnectExcel("d:/test.xls")
mydata=sqlFetch(channel,'Sheet1') # 如果是Excel2007格式数据则要换一个函数odbcConnectExcel2007

检索:write.table write.csv区别  不写入行名  row.names  不写入列名  col.names

> write.table(x,file="mydata",row.names=FALSE,col.names=FALSE)  #可以
> write.csv(x,file="mydata2",row.names=FALSE,col.names=FALSE)  #不可以
 

1. 首先用getwd() 获得当前目录,用setwd("C:/data")设定当前目录:

2.0 数据保存:创建数据框d:

>d <- data.frame(obs = c(1, 2, 3), treat = c("A", "B", "A"), weight = c(2.3, NA, 9))

2.1 保存为简单文本:

>write.table(d, file = "c:/data/foo.txt", row.names = F, quote = F)

2.2 保存为逗号分割文本:

>write.csv(d, file = "c:/data/foo.csv", row.names = F, quote = F)

2.3 保存为R格式文件:

>save(d, file = "c:/data/foo.Rdata")

2.4 保存工作空间镜像:

>save.image( ) = save(list =ls(all=TRUE), file=".RData")

3.0 数据读取:读取函数主要有:read.table( ), scan( ) ,read.fwf( ).

3.1 用 read.table( ) 读 "c:\data” 下houses.dat:

>setwd("C:/data"); HousePrice <- read.table(file="houses.dat")

如果明确数据第一行做表头,则使用header选项:

>HousePrice <- read.table("houses.dat", header=TRUE)

read.table( ) 变形有: aread.csv( ),read.csv2( ), read.delim( ), read.delim2( ).前两读取逗号分割数据,后两个读取其他分割符数据。

3.2  用scan( ) 比read.table( ) 更灵活。但要指定 变量类型:如:C:\data\data.dat:

M 65 168

M 70 172

F 54 156

F 58 163

>mydata <- scan("data.dat", what = list("", 0, 0))

>mydata <- scan("data.dat", what = list(Sex="", Weight=0, Height=0))

3.3 用read.fwf( )读取文件中一些固定宽度数据:如:C:\data\data.txt:

A1.501.2

A1.551.3

B1.601.4

>mydata <- read.fwf("data.txt", widths=c(1, 4, 3), col.names=c("X","Y","Z"))

4.0 excel格式数据读取:

4.1 利用剪切板:选择excel数据,再用(CTRL+C)复制。在R中键入命令:

>mydata <- read.delim("clipboard")

4.2 使用程序包 RODBC.如: c:\data\body.xls

Sex Weight Height

M 65 168

M 70 172

F 54 156

F 58 163

> library(RODBC)

> z <- odbcConnectExcel("c:/data/body.xls")

> foo <- sqlFetch(z, "Sheet1")

> close(z)

R语言:读取数据的更多相关文章

  1. R语言进行数据预处理wranging

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...

  2. R语言进行数据预处理

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with Rpackages:tidyr dplyr Ground rules l ...

  3. SQL中CRUD C——create 添加数据 R——read 读取数据 U——update 修改数据 D——delete 删除数据

    在SQL server中对数据库的操作: 删除表:drop table 表名修改表:alter table 表名 添加列add 列名 列类型alter table 表名 drop column 列名 ...

  4. R语言 我要如何开始R语言_数据分析师

    R语言 我要如何开始R语言_数据分析师 我要如何开始R语言? 很多时候,我们的老板跟我们说,这个东西你用R语言去算吧,Oh,My god!什么是R语言?我要怎么开始呢? 其实回答这个问题很简单,首先, ...

  5. 用R语言提取数据框中日期对应年份(列表转矩阵)

    用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用 ...

  6. R语言读写数据

    R语言读写数据 一般做模型的时候,从外部的excel中读入数据,我现在常用的比较多的是read_csv(file) 读入之前先把excel数据转化成.csv格式 同样的把结果输出来的时候用的是writ ...

  7. R语言读取文件

    1.R语言读取文件,文件类型为.txt 直接使用read.table()即可,若不知道当前的工作目录,可以使用函数getwd()来查看 2.R语言读取文件,文件类型为.xlsx 方法一:可以把excl ...

  8. R语言外部数据读取

    0  引言 使用R语言.Python等进行数据处理的第一步就是要导入数据(也可以使用UCI数据集),下文主要根据R语言的帮助文档来介绍外部文件数据的导入方法和注意事项.下面先附上一些指令. 1 格式r ...

  9. R语言读取matlab中数据

    1. 在matlab中将数据保存到*.mat 文件夹 save("data.mat","data","label")#将data和label ...

  10. R语言读取Hive数据表

    R通过RJDBC包连接Hive 目前Hive集群是可以通过跳板机来访问 HiveServer, 将Hive 中的批量数据读入R环境,并进行后续的模型和算法运算. 1. 登录跳板机后需要首先在Linux ...

随机推荐

  1. Datagrid分页、排序、删除代码

    <%@ Page language="c#" Codebehind="default.aspx.cs" AutoEventWireup="fal ...

  2. iOS 中strong,weak,copy,assign区别

    1:ARC环境下,strong代替retain.weak代替assign2:weak的作用:在ARC环境下,,所有指向这个对象的weak指针都将被置为nil.这个T特性很有用,相信很多开发者都被指针指 ...

  3. Pipeline 与 xargs

    Pipeline 与 xargs Pipeline与命令行參数 应用程序接收输入的两种方式: 命令行參数 输入字符串被当成參数,通过int main(int argc, char **argv), 中 ...

  4. 深入理解Linux内核-块设备驱动程序

    扇区: 1.硬盘控制器将磁盘看成一大组扇区2.扇区就是一组相邻字节3.扇区按照惯例大小设置位512字节4.存放在块设备中的数据是通过它们在磁盘上的位置来标识,即首个扇区的下标和扇区的数目.5.扇区是硬 ...

  5. 简单修改文件名python脚本

    import os import sys path = "D:\emojis" for (path,dirs,files) in os.walk(path): for filena ...

  6. OpenCV中图像算术操作与逻辑操作

    OpenCV中图像算术操作与逻辑操作 在图像处理中有两类最重要的基础操作各自是图像点操作与块操作.简单点说图像点操作就是图像每一个像素点的相关逻辑与几何运算.块操作最常见就是基于卷积算子的各种操作.实 ...

  7. yum 完全卸载依赖

    实例:安装rabbitmq-server # yum history list rabbitmq-server Loaded plugins: fastestmirror ID | Login use ...

  8. 技术范儿的 Keep 发力AI赛道,为什么“虚拟教练”会更懂你?

    http://www.tmtpost.com/3363367.html 摘要: 虚拟教练技术会整合到一些业务场景和硬件产品中收费,但是收费的具体情况彭跃辉还暂未透露. 图片来源于Unsplash 自去 ...

  9. MYSQL双机热备份的配置实施(问题总结)

    为了实现MYSQL数据库的冗灾.备份.恢复.负载均衡等功能,喻名堂这两天一直在学习和研究mysql的双机热备,其实MYSQL的双机热备就是使用MYSQL同步功能两种方式里面的“主-主”同步方式实现的. ...

  10. ES6,新增数据结构Set的用法

    ES6 提供了新的数据结构 Set. 特性 似于数组,但它的一大特性就是所有元素都是唯一的,没有重复. 我们可以利用这一唯一特性进行数组的去重工作. 单一数组的去重. let set6 = new S ...