tesnorflow实现N个epoch训练数据读取的办法
https://blog.csdn.net/lujiandong1/article/details/53991373
方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读取一个batch_size的数据,直至最后读取的数据量达到N个epoch。说明,这个方式来实现epoch的输入是不合理。不是说每个样本都会被读取到的。
对于这个的解释,从数学上解释,比如说有放回的抽样,每次抽取一个样本,抽取N次,总样本数为N个。那么,这样抽取过一轮之后,该样本也是会有1/e的概率没有被抽取到。所以,如果使用这种方式去训练的话,理论上是没有用到全部的数据集去训练的,很可能会造成过拟合的现象。
我做了个小实验验证:
- import tensorflow as tf
- import numpy as np
- import datetime,sys
- from tensorflow.contrib import learn
- from model import CCPM
- training_epochs = 5
- train_num = 4
- # 运行Graph
- with tf.Session() as sess:
- #定义模型
- BATCH_SIZE = 2
- # 构建训练数据输入的队列
- # 生成一个先入先出队列和一个QueueRunner,生成文件名队列
- filenames = ['a.csv']
- filename_queue = tf.train.string_input_producer(filenames, shuffle=True)
- # 定义Reader
- reader = tf.TextLineReader()
- key, value = reader.read(filename_queue)
- # 定义Decoder
- # 编码后的数据字段有24,其中22维是特征字段,2维是lable字段,label是二分类经过one-hot编码后的字段
- #更改了特征,使用不同的解析参数
- record_defaults = [[1]]*5
- col1,col2,col3,col4,col5 = tf.decode_csv(value,record_defaults=record_defaults)
- features = tf.pack([col1,col2,col3,col4])
- label = tf.pack([col5])
- example_batch, label_batch = tf.train.shuffle_batch([features,label], batch_size=BATCH_SIZE, capacity=20000, min_after_dequeue=4000, num_threads=2)
- sess.run(tf.initialize_all_variables())
- coord = tf.train.Coordinator()#创建一个协调器,管理线程
- threads = tf.train.start_queue_runners(coord=coord)#启动QueueRunner, 此时文件名队列已经进队。
- #开始一个epoch的训练
- for epoch in range(training_epochs):
- total_batch = int(train_num/BATCH_SIZE)
- #开始一个epoch的训练
- for i in range(total_batch):
- X,Y = sess.run([example_batch, label_batch])
- print X,':',Y
- coord.request_stop()
- coord.join(threads)
toy data a.csv:
说明:输出如下,可以看出并不是每个样本都被遍历5次,其实这样的话,对于DL的训练会产生很大的影响,并不是每个样本都被使用同样的次数。
方式二:显示设置epoch的数目
- #-*- coding:utf-8 -*-
- import tensorflow as tf
- import numpy as np
- import datetime,sys
- from tensorflow.contrib import learn
- from model import CCPM
- training_epochs = 5
- train_num = 4
- # 运行Graph
- with tf.Session() as sess:
- #定义模型
- BATCH_SIZE = 2
- # 构建训练数据输入的队列
- # 生成一个先入先出队列和一个QueueRunner,生成文件名队列
- filenames = ['a.csv']
- filename_queue = tf.train.string_input_producer(filenames, shuffle=True,num_epochs=training_epochs)
- # 定义Reader
- reader = tf.TextLineReader()
- key, value = reader.read(filename_queue)
- # 定义Decoder
- # 编码后的数据字段有24,其中22维是特征字段,2维是lable字段,label是二分类经过one-hot编码后的字段
- #更改了特征,使用不同的解析参数
- record_defaults = [[1]]*5
- col1,col2,col3,col4,col5 = tf.decode_csv(value,record_defaults=record_defaults)
- features = tf.pack([col1,col2,col3,col4])
- label = tf.pack([col5])
- example_batch, label_batch = tf.train.shuffle_batch([features,label], batch_size=BATCH_SIZE, capacity=20000, min_after_dequeue=4000, num_threads=2)
- sess.run(tf.initialize_local_variables())
- sess.run(tf.initialize_all_variables())
- coord = tf.train.Coordinator()#创建一个协调器,管理线程
- threads = tf.train.start_queue_runners(coord=coord)#启动QueueRunner, 此时文件名队列已经进队。
- try:
- #开始一个epoch的训练
- while not coord.should_stop():
- total_batch = int(train_num/BATCH_SIZE)
- #开始一个epoch的训练
- for i in range(total_batch):
- X,Y = sess.run([example_batch, label_batch])
- print X,':',Y
- except tf.errors.OutOfRangeError:
- print('Done training')
- finally:
- coord.request_stop()
- coord.join(threads)
说明:输出如下,可以看出每个样本都被访问5次,这才是合理的设置epoch数据的方式。
http://stats.stackexchange.com/questions/242004/why-do-neural-network-researchers-care-about-epochs
说明:这个博客也在探讨,为什么深度网络的训练中,要使用epoch,即要把训练样本全部过一遍.而不是随机有放回的从里面抽样batch_size个样本.在博客中,别人的实验结果是如果采用有放回抽样的这种方式来进行SGD的训练.其实网络见不到全部的数据集,推导过程如上所示.所以,网络的收敛速度比较慢.
tesnorflow实现N个epoch训练数据读取的办法的更多相关文章
- tensorflow读取训练数据方法
1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4] ...
- TensorFlow Distribution(分布式中的数据读取和训练)
本文目的 在介绍estimator分布式的时候,官方文档由于版本更新导致与接口不一致.具体是:在estimator分布式当中,使用dataset作为数据输入,在1.12版本中,数据训练只是datase ...
- TensorFlow实践笔记(一):数据读取
本文整理了TensorFlow中的数据读取方法,在TensorFlow中主要有三种方法读取数据: Feeding:由Python提供数据. Preloaded data:预加载数据. Reading ...
- 『TensorFlow』数据读取类_data.Dataset
一.资料 参考原文: TensorFlow全新的数据读取方式:Dataset API入门教程 API接口简介: TensorFlow的数据集 二.背景 注意,在TensorFlow 1.3中,Data ...
- tensorflow之数据读取探究(1)
Tensorflow中之前主要用的数据读取方式主要有: 建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用.使用这种方法十分灵活,可以一下子将所有数据 ...
- TensorFlow数据读取方式:Dataset API
英文详细版参考:https://www.cnblogs.com/jins-note/p/10243716.html Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服 ...
- tensoflow数据读取
数据读取 TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFl ...
- TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...
- 详解Tensorflow数据读取有三种方式(next_batch)
转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预 ...
随机推荐
- ARM汇编编程基础之一 —— 寄存器
ARM的汇编编程,本质上就是针对CPU寄存器的编程,所以我们首先要弄清楚ARM有哪些寄存器?这些寄存器都是如何使用的? ARM寄存器分为2类,普通寄存器和状态寄存器 寄存器类别 寄存器在汇编中的名称 ...
- 【来龙去脉系列】深入理解DIP、IoC、DI以及IoC容器
摘要 面向对象设计(OOD)有助于我们开发出高性能.易扩展以及易复用的程序.其中,OOD有一个重要的思想那就是依赖倒置原则(DIP),并由此引申出IoC.DI以及Ioc容器等概念.通过本文我们将一起学 ...
- Freescale OSBDM JM60仿真器 BGND Interface
The BGND interface provides the standard 6 pin connection for the single wire BGND signal type devel ...
- USBDM Kinetis Debugger and Programmer
Introduction The FRM-xxxx boards from Freescale includes a minimal SWD based debugging interface for ...
- AES CBC/CTR 加解密原理
So, lets look at how CBC works first. The following picture shows the encryption when using CBC (in ...
- SQL Server DATEDIFF() 函数(SQL计算时间差)
select * from task_list where 1=1 and datediff(dd,carateTime,getdate()) =0 定义和用法 DATED ...
- linux 内核升级2 转
linux内核升级 一.Linux内核概览 Linux是一个一体化内核(monolithic kernel)系统. 设备驱动程序可以完全访问硬件. Linux内的设备驱动程序可以方便地以模块化(mod ...
- Embarcadero RAD Studio XE5
英巴卡迪诺 RAD Studio XE是终极应用程序开发套件,能以最快速方式为Windows.Mac OS X. .NET. PHP. Web和移动设备可视化开发数据丰富.界面美观的跨平台应用程序.R ...
- having只用来在group by之后,having不可单独用,必须和group by用。having只能对group by的结果进行操作
having只能对group by的结果进行操作 having只能对group by的结果进行操作 having只能对group by的结果进行操作 having只用来在group by之后,havi ...
- 利用MPMoviePlayerViewController 播放视频 iOS
方法一: @property (nonatomic, strong) MPMoviePlayerController *player; NSString *url = [[NSBundle mainB ...