编辑 | MingMing

尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。

通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。

我把这篇文章分成四个部分:机器学习、NLP、Python和数学。

每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)

机器学习

  • Machine Learning is Fun! (medium.com/@ageitgey)

  • Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

  • An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)

  • A Gentle Guide to Machine Learning (monkeylearn.com)

  • Which machine learning algorithm should I use? (sas.com)

激活和损失函数

  • Sigmoid neurons (neuralnetworksanddeeplearning.com)

  • What is the role of the activation function in a neural network? (quora.com)

  • Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)

  • Activation functions and it’s types-Which is better? (medium.com)

  • Making Sense of Logarithmic Loss (exegetic.biz)

  • Loss Functions (Stanford CS231n)

  • L1 vs. L2 Loss function (rishy.github.io)

  • The cross-entropy cost function (neuralnetworksanddeeplearning.com)

Bias

  • Role of Bias in Neural Networks (stackoverflow.com)

  • Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)

  • What is bias in artificial neural network? (quora.com)

感知器

  • Perceptrons (neuralnetworksanddeeplearning.com)

  • The Perception (natureofcode.com)

  • Single-layer Neural Networks (Perceptrons) (dcu.ie)

  • From Perceptrons to Deep Networks (toptal.com)

回归

  • Introduction to linear regression analysis (duke.edu)

  • Linear Regression (ufldl.stanford.edu)

  • Linear Regression (readthedocs.io)

  • Logistic Regression (readthedocs.io)

  • Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)

  • Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)

  • Softmax Regression (ufldl.stanford.edu)

梯度下降算法

  • Learning with gradient descent (neuralnetworksanddeeplearning.com)

  • Gradient Descent (iamtrask.github.io)

  • How to understand Gradient Descent algorithm (kdnuggets.com)

  • An overview of gradient descent optimization algorithms(sebastianruder.com)

  • Optimization: Stochastic Gradient Descent (Stanford CS231n)

生成式学习

  • Generative Learning Algorithms (Stanford CS229)

  • A practical explanation of a Naive Bayes classifier (monkeylearn.com)

支持向量机

  • An introduction to Support Vector Machines (SVM) (monkeylearn.com)

  • Support Vector Machines (Stanford CS229)

  • Linear classification: Support Vector Machine, Softmax (Stanford 231n)

反向传播

  • Yes you should understand backprop (medium.com/@karpathy)

  • Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)

  • How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)

  • Backpropagation Through Time and Vanishing Gradients (wildml.com)

  • A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)

  • Backpropagation, Intuitions (Stanford CS231n)

深度学习

  • Deep Learning in a Nutshell (nikhilbuduma.com)

  • A Tutorial on Deep Learning (Quoc V. Le)

  • What is Deep Learning? (machinelearningmastery.com)

  • What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)

优化和降维

  • Seven Techniques for Data Dimensionality Reduction (knime.org)

  • Principal components analysis (Stanford CS229)

  • Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

  • How to train your Deep Neural Network (rishy.github.io)

长短期记忆网络

  • A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)

  • Understanding LSTM Networks (colah.github.io)

  • Exploring LSTMs (echen.me)

  • Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

卷积神经网络

  • Introducing convolutional networks (neuralnetworksanddeeplearning.com)

  • Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)

  • Conv Nets: A Modular Perspective (colah.github.io)

  • Understanding Convolutions (colah.github.io)

递归神经网络

  • Recurrent Neural Networks Tutorial (wildml.com)

  • Attention and Augmented Recurrent Neural Networks (distill.pub)

  • The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)

  • A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)

强化学习

  • Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)

  • A Tutorial for Reinforcement Learning (mst.edu)

  • Learning Reinforcement Learning (wildml.com)

  • Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

生成对抗网络

  • What’s a Generative Adversarial Network? (nvidia.com)

  • Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)

  • An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)

  • Generative Adversarial Networks for Beginners (oreilly.com)

多任务学习

  • An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)

自然语言处理

  • A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)

  • The Definitive Guide to Natural Language Processing (monkeylearn.com)

  • Introduction to Natural Language Processing (algorithmia.com)

  • Natural Language Processing Tutorial (vikparuchuri.com)

  • Natural Language Processing (almost) from Scratch (arxiv.org)

深入学习和NLP

  • Deep Learning applied to NLP (arxiv.org)

  • Deep Learning for NLP (without Magic) (Richard Socher)

  • Understanding Convolutional Neural Networks for NLP (wildml.com)

  • Deep Learning, NLP, and Representations (colah.github.io)

  • Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

  • Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)

  • Deep Learning for NLP with Pytorch (pytorich.org)

词向量

  • Bag of Words Meets Bags of Popcorn (kaggle.com)

  • On word embeddings Part I, Part II, Part III (sebastianruder.com)

  • The amazing power of word vectors (acolyer.org)

  • word2vec Parameter Learning Explained (arxiv.org)

  • Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)

Encoder-Decoder

  • Attention and Memory in Deep Learning and NLP (wildml.com)

  • Sequence to Sequence Models (tensorflow.org)

  • Sequence to Sequence Learning with Neural Networks (NIPS 2014)

  • Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)

  • How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)

  • tf-seq2seq (google.github.io)

Python

  • 7 Steps to Mastering Machine Learning With Python (kdnuggets.com)

  • An example machine learning notebook (nbviewer.jupyter.org)

例子

  • How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)

  • Implementing a Neural Network from Scratch in Python (wildml.com)

  • A Neural Network in 11 lines of Python (iamtrask.github.io)

  • Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
    Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com)

  • How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)

  • How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)

Scipy和numpy

  • Scipy Lecture Notes (scipy-lectures.org)

  • Python Numpy Tutorial (Stanford CS231n)

  • An introduction to Numpy and Scipy (UCSB CHE210D)

  • A Crash Course in Python for Scientists (nbviewer.jupyter.org)

scikit-learn

  • PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)

  • scikit-learn Classification Algorithms (github.com/mmmayo13)

  • scikit-learn Tutorials (scikit-learn.org)

  • Abridged scikit-learn Tutorials (github.com/mmmayo13)

Tensorflow

  • Tensorflow Tutorials (tensorflow.org)

  • Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)

  • TensorFlow: A primer (metaflow.fr)

  • RNNs in Tensorflow (wildml.com)

  • Implementing a CNN for Text Classification in TensorFlow (wildml.com)

  • How to Run Text Summarization with TensorFlow (surmenok.com)

PyTorch

  • PyTorch Tutorials (pytorch.org)

  • A Gentle Intro to PyTorch (gaurav.im)

  • Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

  • PyTorch Examples (github.com/jcjohnson)

  • PyTorch Tutorial (github.com/MorvanZhou)

  • PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)

数学

  • Math for Machine Learning (ucsc.edu)

  • Math for Machine Learning (UMIACS CMSC422)

线性代数

  • An Intuitive Guide to Linear Algebra (betterexplained.com)

  • A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)

  • Understanding the Cross Product (betterexplained.com)

  • Understanding the Dot Product (betterexplained.com)

  • Linear Algebra for Machine Learning (U. of Buffalo CSE574)

  • Linear algebra cheat sheet for deep learning (medium.com)

  • Linear Algebra Review and Reference (Stanford CS229)

概率

  • Understanding Bayes Theorem With Ratios (betterexplained.com)

  • Review of Probability Theory (Stanford CS229)

  • Probability Theory Review for Machine Learning (Stanford CS229)

  • Probability Theory (U. of Buffalo CSE574)

  • Probability Theory for Machine Learning (U. of Toronto CSC411)

微积分

  • How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)

  • How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)

  • Vector Calculus: Understanding the Gradient (betterexplained.com)

  • Differential Calculus (Stanford CS224n)

  • Calculus Overview (readthedocs.io)

原文链接https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd78

机器学习、NLP、Python和Math最好的150余个教程(建议收藏)的更多相关文章

  1. 可能是史上最全的机器学习和Python(包括数学)速查表

    新手学习机器学习很难,就是收集资料也很费劲.所幸Robbie Allen从不同来源收集了目前最全的有关机器学习.Python和相关数学知识的速查表大全.强烈建议收藏! 机器学习有很多方面. 当我开始刷 ...

  2. python中math常用函数

    python中math的使用 import math #先导入math包 1 三角函数 print math.pi #打印pi的值 3.14159265359 print math.radians(1 ...

  3. 分别使用 Python 和 Math.Net 调用优化算法

    1. Rosenbrock 函数 在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 .也称为 R ...

  4. (转)python资料汇总(建议收藏)零基础必看

    摘要:没料到在悟空问答的回答大受欢迎,为方便朋友,重新整理汇总,内容包括长期必备.入门教程.练手项目.学习视频. 一.长期必备. 1. StackOverflow,是疑难解答.bug排除必备网站,任何 ...

  5. Python 100个样例代码【爆肝整理 建议收藏】

    本教程包括 62 个基础样例,12 个核心样例,26 个习惯用法.如果觉得还不错,欢迎转发.留言. 一. Python 基础 62 例 1 十转二 将十进制转换为二进制: >>> b ...

  6. Python导出Excel为Lua/Json/Xml实例教程(三):终极需求

    相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 Python导出E ...

  7. Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验

    Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出E ...

  8. Python导出Excel为Lua/Json/Xml实例教程(一):初识Python

    Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...

  9. 转载:python + requests实现的接口自动化框架详细教程

    转自https://my.oschina.net/u/3041656/blog/820023 摘要: python + requests实现的接口自动化框架详细教程 前段时间由于公司测试方向的转型,由 ...

随机推荐

  1. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  2. [POI2013]Łuk triumfalny

    [POI2013]Łuk triumfalny 题目大意: 一棵\(n(n\le3\times10^5)\)个结点的树,一开始\(1\)号结点为黑色.\(A\)与\(B\)进行游戏,每次\(B\)能选 ...

  3. Spring(完成毕业设计后的简单回顾)

    最近刚刚做完了毕业设计,在开发时用的是spring框架,做的时候踩了好多坑,又把当初的笔记给翻了翻,做一次简单的回顾 # 1.Spring是什么? 是一个开源的.用于简化企业级应用开发的应用开发框架. ...

  4. BZOJ2081 : [Poi2010]Beads

    暴力枚举$k$,对于一个子串,计算它正着的hash值以及反着的hash值,取最小值得到其最终hash值. 对于$k$,一共有$\lfloor\frac{n}{k}\rfloor$个子串,计算出它们的最 ...

  5. Codeforces 986D Perfect Encoding FFT

    题意: 给定一个数n,选出m个数使得 $\Pi_{i=1}^m a_i\ge n$,求$\sum_{i=1}^m a_i$的最小值 ,其中$m$的大小不限 $n$的长度$\le 10^6$ 简单的计算 ...

  6. Intel Code Challenge Elimination Round (Div.1 + Div.2, combined) D. Generating Sets 贪心

    D. Generating Sets 题目连接: http://codeforces.com/contest/722/problem/D Description You are given a set ...

  7. UVALive 6911 Double Swords 树状数组

    Double Swords 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8 ...

  8. Win10 下 VMware 的安装,以及 VMware 里安装 Ubuntu 18

  9. JS在在线人数和访问人数

    var date=new Date();var expiresDays=10;var count=1500+parseInt(date.getTime()/1000)-parseInt(date.ge ...

  10. OS X - 在80端口启动Nginx

    不知道你是怎么在你的mac上安装nginx的,但是如果你跟我一样: brew install nginx 然后你会发现你的nginx.conf中的端口是8080. 于是你可能像我一样试着把端口改为80 ...