UNIX环境编程学习笔记(19)——进程管理之fork 函数的深入学习
lienhua34
2014-10-07
在“进程控制三部曲”中,我们学习到了 fork 是三部曲的第一部,用于创建一个新进程。但是关于 fork 的更深入的一些的东西我们还没有涉及到,例如,fork 创建的新进程与调用进程之间的关系、父子进程的数据共享问题等。fork 是否可以无限制的调用?如果不行的话,最大限制是多少?另外,我们还将学习一个 fork 的变体 vfork。
1 fork 创建的新进程与调用进程之间的关系
UNIX 操作系统中的所有进程之间的关系呈现一个树形结构。除了进程 ID 为 0(swapper 进程)和 1(init 进程)的进程之外的其他进程,都会存在一个父进程。
fork 函数调用产生的新进程的父进程默认即为调用进程。fork 函数调用产生的父子进程各自的运行时间是不确定的。如果子进程先于父进程终止,这样没有什么问题。但,如果父进程先于子进程终止,那么子进程是不是就没有了父进程,进程树形结构就被破坏了?对于这个问题,UNIX 系统这么处理的:如果某个进程终止了,则将该进程的所有尚未结束的子进程的父进程设置为 init 进程(init 进程是绝不会终止的)。其操作过程大致为:在一个进程终止时,内核逐个检查所有活动进程(因为 UNIX 没有提供一个获取某个进程所有子进程的接口),如果是正在终止的进程的子进程,则将其父进程设置为 init 进程。
2 父子进程的数据共享问题
fork 函数创建的子进程会获得父进程的数据空间、堆和栈的副本。但是,大多数情况下,fork 之后都会紧接着调用 exec 执行新程序,从而覆盖了从父进程拷贝的这些副本,这就造成了内核做了很多无用功。
现在很多的实现都采用写时复制(Copy-On-Write,COW)技术。fork函数调用之后,父子进程共享这些区域,而且内核将这些区域的权限改为只读的。如果父、子进程中任何一个试图修改这些区域,则内核只为要修改的区域做一份拷贝给该进程。
下面我们来看一个共享数据的例子,
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
int glob = ;
int
main(void)
{
int var;
pid_t pid;
var = ;
if ((pid = fork()) < ) {
printf("fork error: %s\n", strerror(errno));
exit(-);
} else if (pid == ) {
var++;
glob++;
printf("child: glob=%d, var=%d\n", glob, var);
exit();
}
wait(NULL);
printf("parent: glob=%d, var=%d\n", glob, var);
exit();
}
该程序在 fork 之后的父进程等待子进程结束,而子进程将整型变量glob 和 var 都加了 1. 编译该程序,生成并执行 forkdemo. 从下面的运行结果,我们看到子进程修改的 glob 和 var 变量对父进程没有任何影响。
lienhua34:demo$ gcc -o forkdemo forkdemo.c
lienhua34:demo$ ./forkdemo
child: glob=, var=
parent: glob=, var=
虽说子进程享用的是父进程的数据副本,子进程的修改对父进程没有任何影响。但有个比较特殊的情况:文件 I/O。fork 会将父进程的所有打开文件描述符都复制到子进程。父子进程中相同的文件描述符则共享同一个文件表项(关于文件描述符和文件表项的关系请参考文档“内核 I/O 数据结构”)。下面我们看一个例子,
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
int
main(void)
{
pid_t pid;
printf("before fork\n");
if ((pid = fork()) < ) {
printf("fork error: %s\n", strerror(errno));
exit(-);
} else if (pid == ) {
printf("in child process\n");
exit();
}
wait(NULL);
printf("in parent process\n");
exit();
}
编译该程序,生成并执行文件 forkdemo,
lienhua34:demo$ gcc -o forkdemo forkdemo.c
lienhua34:demo$ ./forkdemo
before fork
in child process
in parent process
lienhua34:demo$ ./forkdemo > foo
lienhua34:demo$ cat foo
before fork
in child process
before fork
in parent process
在没有对标准输出重定向之前,运行 forkdemo 看不出啥问题。当重定向标准输出到一个文件(./forkdemo > foo)时,我们可以看到父进程打印的字符串在子进程打印的字符串之后。这是因为父子进程标准输出共享了同一个文件表项,也即共享了同一个文件偏移量。
另外,我们注意到在标准输出没有重定向时,字符串“before fork”只输出一次,但是在标准输出重定向到文件之后输出了两次。这是因为标准I/O 库函数 printf 在标准输出连接到终端设备时是行缓冲的,于是在 fork函数之后,缓冲区中的数据已经被冲洗了。而当标准输出重定向文件之后,printf 函数就变成了全缓冲了,在 fork 之前调用 printf 函数将字符串“before fork”写到缓冲区中,fork 时该字符串还在缓冲区中,于是便拷贝一份给子进程。当父子进程都调用 exit 函数之后,缓冲区中的数据都被冲洗到文件中,于是被出现了两份“before fork”。
3 fork 典型应用场景
fork 有两种典型的应用场景:
• 创建一个新进程执行新的程序。即调用 fork 之后子进程立即调用 exec函数执行一个新程序,例如文档“进程控制三部曲”中的示例 2.
• 父进程希望复制自己,使父、子进程同时执行不同的代码段。这在网络服务进程中比较常见:父进程等待客户端的服务请求,当接收到一个请求之后,父进程调用 fork,然后让子进程处理该请求,而父进程继续等待下一个服务请求。其代码框架如下所示:
void serve(int sockfd)
{
int clfd;
pid_t pid;
for (;;) {
clfd = accept(sockfd, NULL, NULL);
if (clfd < ) {
/* print error message */
continue;
}
if ((pid = fork()) < ) {
/* fork error */
continue;
} else if (pid == ) {
/* deal with clfd in child process */
close(clfd);
exit();
} else {
/* in parent process,
close the accepted socket "clfd",
then continues to listen next socket connection. */
}
}
}
4 fork 函数调用次数的最大限制是多少
每个实际用户 ID 具有一个在任何时刻的最大进程数。CHILD_MAX 规定了每个实际用户 ID 在任一时刻可具有的最大进程数。我们看下面一个例子,
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
int
main(void)
{
pid_t pid;
int count;
printf("CHILD_MAX: %ld\n", sysconf(_SC_CHILD_MAX));
count = ;
for (;;) {
if ((pid = fork()) < ) {
printf("fork error: %s\n", strerror(errno));
break;
} else if (pid == ) {
sleep();
exit();
}
count++;
}
printf("count: %d\n", count);
exit();
}
编译该程序,生成并运行文件 forkdemo,
lienhua34:demo$ gcc -o forkdemo forkdemo.c
lienhua34:demo$ ./forkdemo
CHILD_MAX: 15969
fork error: Resource temporarily unavailable
count: 15737
从上面的运行结果可以看出我的系统规定了每个实际用户 ID 在任一时刻可具有的最大进程数为 15969。而在 for 循环中 fork 创建了 15737 个进程(包括调用进程本身)之后,fork 就因为没有可用资源而创建新进程失败。
5 fork 的变体vfork
vfork 函数是 fork 函数的一个变体,其调用序列和返回值与 fork 函数一致,不过两者的语义不同。维基百科上关于 vfork 的说明如下(参考fork(system_call))。
Vfork is a variant of fork with the same calling convention and much the same semantics; it originated in the 3BSD version of Unix,[citation needed] the first Unix to support virtual memory. It was standardized by POSIX, which permitted vfork to have exactly the same behavior as fork, but marked obsolescent in the 2004 edition,[4] and has disappeared from subsequent editions.
我们看到在 POSIX 2004 版本中已经将 vfork 函数注为过时的,而且在之后的版本中已经不再出现 vfork 函数了。但是,既然《APUE》中讲到了这个,那我们就来看一下 vfork 函数跟 fork 函数到底有什么区别吧。
vfork 函数和 fork 函数的区别有两点:
1. fork 会将父进程的地址空间拷贝给子进程;而 vfork 没有,子进程在父进程的地址空间中运行。
2. fork 无法确保父子进程的执行顺序;而 vfork 保证子进程先执行,父进程会一直阻塞直到子进程调用 exit 或 exec。(注:vfork 的这个特征可能会导致死锁,若子进程在调用 exit 或 exec 之前依赖于父进程的进一步动作,而父进程也正在等待子进程,于是出现了循环等待的问题。)
我们来对比一下 vfork 和 fork 在处理数据方面有什么不同,
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
int glob = ;
int
main(void)
{
int var;
pid_t pid;
var = ;
if ((pid = vfork()) < ) {
printf("fork error: %s\n", strerror(errno));
exit(-);
} else if (pid == ) {
var++;
glob++;
printf("child: glob=%d, var=%d\n", glob, var);
exit();
}
printf("parent: glob=%d, var=%d\n", glob, var);
exit();
}
上面程序拷贝了上面 fork 函数处理共享数据的示例程序,将 fork 改成vfork,并且去掉了 wait(NULL) 语句。保存为 vforkdemo.c,编译该程序,生成并执行 vforkdemo 文件,
lienhua34:demo$ gcc -o vforkdemo vforkdemo.c
lienhua34:demo$ ./vforkdemo
child: glob=1, var=1
parent: glob=1, var=1
从上面的运行结果,我们看到 vfork 创建的子进程修改了 glob 和 var变量之后,父进程也看到了这个修改。
vfork 函数的出现原因可能是早期系统的 fork 没有实现写时复制技术,导致每次 fork 调用做了很多无用功(大多数情况下都是 fork 之后调用 exec执行新程序)且效率不高,于是便创造了 vfork 函数。而现在的实现基本都是采用写时复制技术,而且 vfork 函数使用不当还会出现死锁,于是 vfork函数也便没有了存在的必要性。
(done)
UNIX环境编程学习笔记(19)——进程管理之fork 函数的深入学习的更多相关文章
- Linux学习笔记(六) 进程管理
1.进程基础 当输入一个命令时,shell 会同时启动一个进程,这种任务与进程分离的方式是 Linux 系统上重要的概念 每个执行的任务都称为进程,在每个进程启动时,系统都会给它指定一个唯一的 ID, ...
- Linux内核学习笔记-2.进程管理
原创文章,转载请注明:Linux内核学习笔记-2.进程管理) By Lucio.Yang 部分内容来自:Linux Kernel Development(Third Edition),Robert L ...
- UNIX环境高级编程学习笔记(十)为何 fork 函数会有两个不同的返回值【转】
转自:http://blog.csdn.net/fool_duck/article/details/46917377 以下是基于 linux 0.11 内核的说明. 在init/main.c第138行 ...
- Linux System Programming 学习笔记(五) 进程管理
1. 进程是unix系统中两个最重要的基础抽象之一(另一个是文件) A process is a running program A thread is the unit of activity in ...
- 进程管理之fork函数
fork函数的定义 #include <unistd.h> #include <sys/types.h> pid_t fork(void); fork函数在父进程中返回子进程的 ...
- node.js在windows下的学习笔记(8)---进程管理Process
process是一个全局内置对象,可以在代码中的任何位置访问此对象,这个对象代表我们的node.js代码宿主的操作系统进程对象. 使用process对象可以截获进程的异常.退出等事件,也可以获取进程的 ...
- UNIX基础知识--<<UNIX 环境编程>>读书笔记
1 shell程序就是位于应用软件与系统调用之间的程序 每个用户登录系统,系统就会为用户分配shell (用户的登录的口令文件 在 /etc/passwd 2 ls filename 运行原理 ...
- Linux -- 进程管理之 fork() 函数
一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己. Test1 f ...
- Linux学习笔记(五) 账号管理
1.用户与组账号 用户账号:包括实际人员和逻辑性对象(例如应用程序执行特定工作的账号) 每一个用户账号包含一个唯一的用户 ID 和组 ID 标准用户是系统安装过程中自动创建的用户账号,其中除 root ...
随机推荐
- js使用正则替换掉所有的“”
需求,使用bootstrap 的 summernote上传图片,转换成文件流,上传给后台,上传用json传送,不能有“” content = content.replace(/\"/ig,& ...
- [转]jquery.validate.js表单验证
原文地址:https://www.cnblogs.com/si-shaohua/p/3780321.html 一.用前必备官方网站:http://bassistance.de/jquery-plugi ...
- Dell 服务器阵列扩容【经验分享(转)】
看到论坛有朋友发帖询问Dell服务器的扩容,索性整理下之前做的文档,发出来和大家做个分享. 做之前给大家提醒2个注意点:①请做好数据备份,相同于HP.IBM,该扩容过程是不可逆的.②本扩容方法支持同级 ...
- 看不懂深度Linux系统的文件管理器图标
为了保持对Linux的熟悉度,MacBookPro一般放在公司,家里(每次用这个词是我觉得最纠结的时候,我现在有家吗?)用的是普通笔记本装了深度Linux. 之所以安装深度,主要的原因应该是支持国产吧 ...
- [转]Linux 命令行快捷键
群里有人问"问个问题,Linux 命令行有没有快捷键一下从行末会到行头?经常敲了很多命令发现忘加 sudo 了,然后把命令删了重新敲一遍". 自己还真不知道怎么操作,只知道历史命令 ...
- 如何安装docker-compose
docker-compose还是挺好用的~~~~~ 这里简单介绍下两种安装docker-compose的方式,第一种方式相对简单,但是由于网络问题,常常安装不上,并且经常会断开,第二种方式略微麻烦,但 ...
- 跨域通信--Window.postMessage()
一.跨源通信概述 源:协议.端口号(https默认值433).主机域名(document.domain) 作用:向目标窗口派发MessageEvent消息(四个属性) 兼容参考 MessageEven ...
- android开发 系统时间与定时器之间有关系嘛?
如题: android开发 系统时间与定时器之间有关系嘛? 答案:有. 看定时器源码: /* * Schedule a task. */ private void scheduleImpl(Timer ...
- JSP字符集编码集合
在这里,我们先说说JSP/Servlet中的几个编码的作用. 在JSP/Servlet 中主要有以下几个地方可以设置编码,pageEncoding="UTF-8".contentT ...
- 获取最后插入的id另外方法
在此记录备忘. CREATE TABLE tb_test(custid INT IDENTITY(1,1) NOT NULL , name nvarchar(200) NOT NULL) DECLAR ...