前言:

  本次实验是将一些简单的决策理论和PGM推理结合,实验内容相对前面的图模型推理要简单些。决策理论采用的是influence diagrams,和常见图模型本质一样,

其中的决策节点也可以用CPD来描述,做决策时一般是采用最大期望效用准则(MEU)。实验内容参考参考的内容是coursera课程:Probabilistic Graphical Models中的assignment 5. 实验code可参考网友的:code.

  实验中一些函数简单说明:

  Fnew = VariableElimination(F, Z):

  给定factorlist F和需要消除的变量集Z,采用sum-product的方法消除这些变量后得到factor集Fnew.内部需调用函数EliminateVar()。

  EU = SimpleCalcExpectedUtility(I):

  实验1的内容。I为influence diagrams中的所有factor,包含I.RandomFactors、 I.DecisionFactors、 I.UtilityFactors三种。计算时可以把RandomFactors和DecisionFactors结合在一起,看出是一个BN,然后对该BN进行变量消除,将那些不是效用节点父节点的变量消除掉,得到的factor中就只包含效用节点父节点了。

最后将其与UtilityFactors相乘就可以得到期望效用了,计算公式如下:

  EUF = CalculateExpectedUtilityFactor( I ):

  实验2的内容。EUF是指期望效用factor. 将前面的EU计算公式变形后如下:

  而所求的EUF就是公式中的:

  注意与实验1中的SimpleCalcExpectedUtility()区分开来,这里是消除掉与决策节点无关的那些变量(实验1消除的是与效用节点无关的变量)。所以EUF中的var只剩下决策节点及其父节点。

  [MEU OptimalDecisionRule] = OptimizeMEU( I ):

  实验3的内容。求的MEU为最大期望效用。除决策factor中的变量外,其它变量组合的每一个assignment下,决策D下的不同决策将得到不同的效用,此

assignment下当然是取效用最大的那个决策。因此这样就好构成一个新的factor,为OptimalDecisionRule.factor中所有的val之和就为MEU. 该函数内部需要调用CalculateExpectedUtilityFactor().

  [MEU OptimalDecisionRule] = OptimizeWithJointUtility( I ):

  实验4的内容。该实验处理参数和实验3一样,不同的是这里需要处理有多个效用节点的情形。因为效用值具有可加性,所以只需将这些效用节点所在的factor相加起来构成一个新的效用factor,然后直接调用OptimizeMEU()输出就ok了。

  [MEU OptimalDecisionRule] = OptimizeLinearExpectations( I ):

  实验5的内容。所完成的功能和实验4是一样的,函数接口也相同,只是采用的方法不同。实验4中是先将所有的效用factor相加,然后采用实验3的函数来计算。而实验5是直接将效用计算公式变形,如下:

  

  先将EUF整合,然后采用类似OptimizeMEU()的方法来求解。

  相关知识点:

  Arrhythmogenic Right Ventricular Dysplasia (ARVD): 心律失常性右室心肌病

  implantable cardioverter defibrillator(ICD):植入型心律转复除颤器,与手术治疗ARVD有关。

  ARVD的influence diagrams如下:

  

  其中的ARVD变量节点为X,其表示是否得有ARVD;它受先验X3影响;对ARVD的一些观察结果用T表示;决策变量为D(有时候也用A表示),决定是否进行ICD手术,

它与T相关;节点O为是否出现bad outcome,由X和D决定;最后的效用节点D由O和D决定。

  简单决策包括下面几个部分:一个动作序列A,一般用矩形表示;一个状态序列X,一般用椭圆表示;一个分布P(X|A);一个效用函数U(X,A);效用节点U一般用菱形表示。

  Expected utility(期望效用)表示做出某个决策后的期望效用,效用值不一定是概率,它是一个实数,可以为负。其计算公式如下:

  MEU(最大期望效用):也就是说做出某个决策后得到的效用最大。此时的决策a计算公式为:

  

  Information edge:指那些与动作节点相连的状态节点之间的edge.这些information edge构成了一个决策规则,用CPD来描述。有information edge的期望效用计算

公式为:

 

  对应的最大期望效用计算公式为:

 

  决策理论可以将PGM中的一些inference方法引进来。

  多属性效用函数(Multi-Attribute Utilities):通常情况下效用值受多个变量影响,可以将这些变量整合到一个效用函数中。关于多属性效用函数更详细的理解可参考网友demonstrate 的 blog:PGM 读书笔记节选(十七).

  效用不能单纯从概率上来看,效用函数应该能体现用户对结果的偏好,它一般需考虑做决策时的风险。

  VPI(value of perfect information ):增加一条information edge到决策变量前后的MEU变化量。VPI>=0成立。

  参考资料:

实验code可参考网友的:code

  coursera课程:Probabilistic Graphical Models

Daphne Koller,Probabilistic Graphical Models Principles and Techniques书籍第22章

网友demonstrate 的 blog:PGM 读书笔记节选(十七)

机器学习&数据挖掘笔记_22(PGM练习六:制定决策)的更多相关文章

  1. 机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)

    为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗 ...

  2. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  3. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  4. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  5. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  6. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

  7. 机器学习&数据挖掘笔记_20(PGM练习四:图模型的精确推理)

    前言: 这次实验完成的是图模型的精确推理.exact inference分为2种,求边缘概率和求MAP,分别对应sum-product和max-sum算法.这次实验涉及到的知识点很多,不仅需要熟悉图模 ...

  8. 机器学习&数据挖掘笔记_23(PGM练习七:CRF中参数的学习)

    前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在grap ...

  9. 机器学习&数据挖掘笔记_21(PGM练习五:图模型的近似推理)

    前言: 这次练习完成的是图模型的近似推理,参考的内容是coursera课程:Probabilistic Graphical Models . 上次实验PGM练习四:图模型的精确推理 中介绍的是图模型的 ...

随机推荐

  1. centos yum 安装 mongodb 以及php扩展

    centos yum 安装 mongodb 以及php扩展 投稿:hebedich 字体:[增加 减小] 类型:转载 MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用 ...

  2. IO-03. 求整数均值(10)

    本题要求编写程序,计算4个整数的和与平均值.题目保证输入与输出均在整型范围内. 输入格式: 输入在一行中给出4个整数,其间以空格分隔. 输出格式: 在一行中按照格式“Sum = 和; Average ...

  3. PHP 表单验证

    1. 验证文本框是否有内容且不能为空 <?php if (! (filter_has_var(INPUT_POST, 'flavor') && (strlen(filter_in ...

  4. ABP框架详解(八)动态ApiController的生成和访问机制

    在ABP框架中提供了一套动态生成ApiController的机制(依然支持原生ApiController的使用方式),虽然说是动态生成ApiController但是实际上并没有真正在启动程序的时候生成 ...

  5. 【腾讯Bugly干货分享】从0到1打造直播 App

    本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/5811d42e7fd6ec467453bf58 作者:李智文 概要 分享内容: ...

  6. 设计模式之美:Visitor(访问者)

    索引 意图 结构 参与者 适用性 效果 相关模式 实现 实现方式(一):Visitor 模式结构样式代码. 实现方式(二):使用 Visitor 模式解构设计. 实现方式(三):使用 Acyclic ...

  7. JavaScript使用DeviceOne开发实战(五)仿ZAKER应用

    关于index底下切换的的组件,可以用ViewShower实现,详见: do_ViewShower http://bbs.deviceone.net/forum.php?mod=viewthread& ...

  8. REST建模语言RAML介绍

    原创文章转载请注明出处:@协思, http://zeeman.cnblogs.com   RAML是什么?   RAML是一种简洁的RESTful API描述性语言,它基于 YAML和JSON这样的公 ...

  9. 用批处理文件进行TCP/IP设置,方便在家与办公IP切换

    在公司用公司分配的固定IP上网,回家后又要将本本设置为家里的固定IP上网,每次都要手动重复一个过程: 打开网络中心,选择本地连接,进入属性然后选择IPV4进行TCP/IP的设置,填入IP,子网掩码DN ...

  10. 据说每个大牛、小牛都应该有自己的库——DOM处理

    这几天整理了一下思路,本来觉得DOM部分会有很多东西,但是忽然发现频繁使用的其实并不太多 class class处理部分主要有四个 hasClass:检查元素是否包含某个class addClass: ...