Last non-zero Digit in N!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5861    Accepted Submission(s): 1451

Problem Description
The expression N!, read as "N factorial," denotes the product of the first N positive integers, where N is nonnegative. So, for example, N N! 0 1 1 1 2 2 3 6 4 24 5 120 10 3628800
For this problem, you are to write a program that can compute the last non-zero digit of the factorial for N. For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce "2" because 5! = 120, and 2 is the last nonzero digit of 120.
 
Input
Input to the program is a series of nonnegative integers, each on its own line with no other letters, digits or spaces. For each integer N, you should read the value and compute the last nonzero digit of N!.
 
Output
For each integer input, the program should print exactly one line of output containing the single last non-zero digit of N!.
 
Sample Input
1

2

26

125

3125

9999
 
Sample Output
1

2

4

8

2

8
 
Source
 
 #include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define MAXN 10000 int lastdigit(char* buf){
const int mod[]={,,,,,,,,,,,,,,,,,,,};
int len=strlen(buf),a[MAXN],i,c,ret=;
if (len==)
return mod[buf[]-''];
for (i=;i<len;i++)
a[i]=buf[len--i]-'';
for (;len;len-=!a[len-]){
ret=ret*mod[a[]%*+a[]]%;
for (c=,i=len-;i>=;i--)
c=c*+a[i],a[i]=c/,c%=;
}
return ret+ret%*;
}
int main()
{
char a[]="\0";
while(scanf("%s",a)!=EOF)
{
int ans=lastdigit(a);
printf("%d\n",ans);
}
return ;
}

Last non-zero Digit in N!(阶乘最后非0位)的更多相关文章

  1. NYOJ1026 阶乘末尾非0 【模板】

    阶乘末尾非0 时间限制:2000 ms  |  内存限制:65535 KB 难度:3 描写叙述 我们的问题非常是简单.n! 末尾非0数是几? 比方n=5的时候,n! =120,那么n!末尾非0数是2. ...

  2. 计算阶乘n!末尾0的个数

    一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...

  3. N阶乘尾部的0个数

    N阶乘尾部的0个数 描述 设计一个算法,计算出n阶乘中尾部零的个数 思路: 1.1 * 2 * 3 * ... * n --> 1 * 2 * 3 * (2 * 2) * 5 * (2 * 3) ...

  4. Rightmost Digit (求n^n最后一位)

    Description Given a positive integer N, you should output the most right digit of N^N.    Input The ...

  5. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  6. HDU 1060 Leftmost Digit(求N^N的第一位数字 log10的巧妙使用)

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  7. 2018年东北农业大学春季校赛 E 阶乘后的0【数论】

    链接:https://www.nowcoder.com/acm/contest/93/E来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 笔试算法题(33):烙饼排序问题 & N!阶乘十进制末尾0的个数二进制最低1的位置

    出题:不同大小烙饼的排序问题:对于N块大小不一的烙饼,上下累在一起,由于一只手托着所有的饼,所以仅有一只手可以翻转饼(假设手足够大可以翻转任意块数的 饼),规定所有的大饼都出现在小饼的下面则说明已经排 ...

  9. acm算法模板(1)

    1. 几何 4 1.1 注意 4 1.2 几何公式 4 1.3 多边形 6 1.4 多边形切割 9 1.5 浮点函数 10 1.6 面积 15 1.7 球面 16 1.8 三角形 17 1.9 三维几 ...

随机推荐

  1. python动态获取对象的属性和方法 (转载)

    首先通过一个例子来看一下本文中可能用到的对象和相关概念. #coding:utf-8 import sys def foo():pass class Cat(object): def __init__ ...

  2. GOOGLE地图坐标拾取方法、GOOGLE地图获取坐标方法

    方法一: 打开google地图-->查找目的地-->右键:此位置居中--> 打开IE浏览器(百度浏览器.GOOGLE浏览器.360浏览器均不行,只能在IE中获取),在IE浏览器的地址 ...

  3. 使用HttpClient 4.3.4 自动登录并抓取中国联通用户基本信息和账单数据,GET/POST/Cookie

    一.什么是HttpClient? HTTP 协议可能是现在 Internet 上使用得最多.最重要的协议了,越来越多的 Java 应用程序需要直接通过 HTTP 协议来访问网络资源.虽然在 JDK 的 ...

  4. asp.net 将word文档进行编辑并导出一个新的word

    最近做项目,需要多word文档进行编辑并导出一个新的word,在最初的word编辑中留下特定的字符串用来替换,然后在本地生成一个新的word文档,并且不修改服务器中的word文档,这样才能保证服务器中 ...

  5. typedef 与指针、多维数组

    1.在typedef中使用指针往往会带来意外的结果.如下: typedef string *pstring; const pstring cstr; 绝大数人刚开始都会认为cstr是一种指针,它指向c ...

  6. XHTML标签的嵌套规则分析

    在 XHTML 的语言里,我们都知道:ul 标签包含着 li.dl 标签包含着 dt 和 dd——这些固定标签的嵌套规则十分明确.但是,还有许多标签是独立的,它们没有被捆绑在一起,比如 h1.div. ...

  7. 强大的Spring缓存技术(下)

    基本原理 一句话介绍就是Spring AOP的动态代理技术. 如果读者对Spring AOP不熟悉的话,可以去看看官方文档 扩展性 直到现在,我们已经学会了如何使用开箱即用的 spring cache ...

  8. Python 变量范围

    1.本地变量,全局变量 Python 中有2种变量作用范围本地变量,全局变量. 变量搜索路径是:本地变量->全局变量 它们简而言之就是本地变量的值只在本地作用范围有效.而全局变量的作用范围是全局 ...

  9. C# 反转字符串

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace 实现字符 ...

  10. Unity3d Android Http 开发中的坑(吐槽

    在一般的U3D网络开发中,直接使用WWW类便足够正常使用,但我在发现使用WWW下载大文件时,会导致整个程序卡顿的情况(不清楚是否我个人电脑问题),所以干脆使用HttpWebRequest/HttpWe ...