codeforces 721C C. Journey(dp)
题目链接:
3 seconds
256 megabytes
standard input
standard output
Recently Irina arrived to one of the most famous cities of Berland — the Berlatov city. There are n showplaces in the city, numbered from1 to n, and some of them are connected by one-directional roads. The roads in Berlatov are designed in a way such that there are nocyclic routes between showplaces.
Initially Irina stands at the showplace 1, and the endpoint of her journey is the showplace n. Naturally, Irina wants to visit as much showplaces as she can during her journey. However, Irina's stay in Berlatov is limited and she can't be there for more than T time units.
Help Irina determine how many showplaces she may visit during her journey from showplace 1 to showplace n within a time not exceeding T. It is guaranteed that there is at least one route from showplace 1 to showplace n such that Irina will spend no more than Ttime units passing it.
The first line of the input contains three integers n, m and T (2 ≤ n ≤ 5000, 1 ≤ m ≤ 5000, 1 ≤ T ≤ 109) — the number of showplaces, the number of roads between them and the time of Irina's stay in Berlatov respectively.
The next m lines describes roads in Berlatov. i-th of them contains 3 integers ui, vi, ti (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ ti ≤ 109), meaning that there is a road starting from showplace ui and leading to showplace vi, and Irina spends ti time units to pass it. It is guaranteed that the roads do not form cyclic routes.
It is guaranteed, that there is at most one road between each pair of showplaces.
Print the single integer k (2 ≤ k ≤ n) — the maximum number of showplaces that Irina can visit during her journey from showplace 1 to showplace n within time not exceeding T, in the first line.
Print k distinct integers in the second line — indices of showplaces that Irina will visit on her route, in the order of encountering them.
If there are multiple answers, print any of them.
4 3 13
1 2 5
2 3 7
2 4 8
3
1 2 4
6 6 7
1 2 2
1 3 3
3 6 3
2 4 2
4 6 2
6 5 1
4
1 2 4 6
5 5 6
1 3 3
3 5 3
1 2 2
2 4 3
4 5 2
3
1 3 5 题意:
给一个无环的无向图,问用不超过T的时间从1到n最多可以经过多少个点.要求输出一条路径;
思路: dp[i][j]表示经过了j个点到达i点,转移的时候直接dfs转移,记录下路径就好了;写的挫一点就T了, AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
#define lson o<<1
#define rson o<<1|1
typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9+200;
const int N=1e6+10;
const int maxn=5e3+5;
const double eps=1e-12; int n,m,t,head[maxn],cnt=0,path[maxn][maxn];//ti[maxn][maxn];
int dp[maxn][maxn];
//map<pair<int,int>,int>path,ti;
pair<int,int>p;
struct Edge
{
int to,next,val;
}edge[maxn]; inline void add_edge(int s,int e,int va)
{
edge[cnt].to=e;
edge[cnt].val=va;
edge[cnt].next=head[s];
head[s]=cnt++;
}
void dfs(int cur,int num,int tim,int fa,int gg)
{
if(tim>=dp[cur][num])return ;
dp[cur][num]=tim;
path[cur][num]=fa;
if(cur==n)return ;
for(int i=head[cur];i!=-1;i=edge[i].next)
{
int x=edge[i].to;
dfs(x,num+1,tim+edge[i].val,cur,edge[i].val);
}
}
void dfs1(int cur,int num,int tim)
{
int fa=path[cur][num];
if(fa>0)
{
for(int i=head[fa];i!=-1;i=edge[i].next)
{
int x=edge[i].to;
if(x!=cur)continue;
dfs1(fa,num-1,tim-edge[i].val);
}
}
printf("%d ",cur);
}
int main()
{
mst(head,-1);
read(n);read(m);read(t);
int u,v,w;
for(int i=1;i<=m;i++)
{
read(u);read(v);read(w);
add_edge(u,v,w);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[i][j]=inf;
dfs(1,1,0,0,0);
int ans=0;
for(int i=1;i<=n;i++)
{
if(dp[n][i]<=t)ans=max(ans,i);
}
cout<<ans<<"\n";
dfs1(n,ans,dp[n][ans]);
return 0;
}
codeforces 721C C. Journey(dp)的更多相关文章
- 【10.58%】【codeforces 721C】Journey
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- CodeForces - 721C 拓扑排序+dp
题意: n个点m条边的图,起点为1,终点为n,每一条单向边输入格式为: a,b,c //从a点到b点耗时为c 题目问你最多从起点1到终点n能经过多少个不同的点,且总耗时小于等于t 题解: 这道 ...
- [Codeforces 1201D]Treasure Hunting(DP)
[Codeforces 1201D]Treasure Hunting(DP) 题面 有一个n*m的方格,方格上有k个宝藏,一个人从(1,1)出发,可以向左或者向右走,但不能向下走.给出q个列,在这些列 ...
- CodeForces 721C Journey(拓扑排序+DP)
<题目链接> 题目大意:一个DAG图有n个点,m条边,走过每条边都会花费一定的时间,问你在不超过T时间的条件下,从1到n点最多能够经过几个节点. 解题分析:对这个有向图,我们进行拓扑排序, ...
- Codeforces Round #374 (Div. 2) C. Journey DP
C. Journey 题目连接: http://codeforces.com/contest/721/problem/C Description Recently Irina arrived to o ...
- Codeforces Round #374 (Div. 2) C. Journey —— DP
题目链接:http://codeforces.com/contest/721/problem/C C. Journey time limit per test 3 seconds memory lim ...
- Codeforces 1063F - String Journey(后缀数组+线段树+dp)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题,做了我整整 2.5h,写篇题解纪念下逝去的中午 后排膜拜 1 年前就独立切掉此题的 ymx,我在 2021 年的第 5270 个小 ...
- codeforces 721C (拓排 + DP)
题目链接:http://codeforces.com/contest/721/problem/C 题意:从1走到n,问在时间T内最多经过多少个点,按路径顺序输出. 思路:比赛的时候只想到拓排然后就不知 ...
- Codeforces 721C [dp][拓扑排序]
/* 题意:给你一个有向无环图.给一个限定t. 问从1点到n点,在不超过t的情况下,最多可以拜访几个点. 保证至少有一条路时限不超过t. 思路: 1.由无后向性我们可以知道(取决于该图是一个DAG), ...
随机推荐
- EffectiveJava——复合优先于继承
继承时实现代码重用的重要手段,但它并非永远是完成这项工作的最佳工具,不恰当的使用会导致程序变得很脆弱,当然,在同一个程序员的控制下,使用继承会变的非常安全.想到了很有名的一句话,你永远不知道你的用户是 ...
- php多版本管理phpenv
曾经有试过phpbrew的童鞋应该知道有多复杂 虽然这个好久没更新了,还是可以用的-- github:phpenv/phpenv 它的原理就是处理PATH变量,将你要求的php版本的路径加到PATH的 ...
- Android系统兼容性问题(持续更新)
相信开发过一段Android的都被Android中的兼容性问题给折腾过,有时这确实很无奈,Android被不同的厂商改的七零八落的.本文主要总结下本人在实际的项目开发过程中所遇到的兼容性问题,以及最后 ...
- Oracle_spatial的函数介绍[转]
Oracle_spatial的函数 一sdo_Geom包的函数: 用于表示两个几何对象的关系(结果为True/False)的函数:RELATE,WITHIN_DISTANCE 验证的函数:VALIDA ...
- IOS xib在tableview上的简单应用(通过xib自定义cell)
UITableView是一种常用的UI控件,在实际开发中,由于原生api的局限,自定义UITableViewCell十分重要,自定义cell可以通过代码,也可以通过xib. 这篇随笔介绍的是通过xib ...
- iOS开发基础框架
---恢复内容开始--- //appdelegate //// AppDelegate.m// iOS开发架构//// Copyright © 2016年 Chason. All rights ...
- iOS之 PJSIP静态库编译(一)
首先放上pjsip官方网站http://www.pjsip.org/download.htm 下载的时候注意while the .bz2 has LF line-ends and is for Uni ...
- HTTPS(SSL/TLS) 原理之深入浅出
注:本文参考自网络上的多篇HTTPS相关文章,本人根据自己的理解,进行一些修改,综合. 1. 必要的加密解密基础知识 1)对称加密算法:就是加密和解密使用同一个密钥的加密算法.因为加密方和解密方使用的 ...
- kettle初探
Kettle是Pentaho的一个组件,主要用于数据库间的数据迁移,到我用过的4.2版,还不支持noSQL,不知道4.4是不是支持了. Kettle自己有三个主要组件:Spoon,Kitchen,Pa ...
- MySQL的replace函数的用法
REPLACE(field,find_str,replace_str): 字段field的内容中的find_str 将被 替换为 replace_str . 例如: update short_url ...