PAT 解题报告 1013. Battle Over Cities (25)
1013. Battle Over Cities (25)
t is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.
For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.
Input
Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.
Output
For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.
Sample Input
3 2 3
1 2
1 3
1 2 3
Sample Output
1
0
0
题意
给定一张图和指定几个点。针对给出的每个点,要求计算,在除掉连接该点的路径的情况下,保证整个图连通所需要添加的边的数量。
分析
计算保证整个图连通需要几个点,亦即求出图中有几个连通分量。两种思路:
- 1.并查集
- 2.DFS
针对每个点,执行算法的过程中,需要注意去除掉该点对应的所有通路。
并查集:
#include<iostream>
#include<cstdio>
//并查集做,AC代码
using namespace std; int n,m,k;
int father[];
int road[][];
//用的巧妙,road[i][0]和road[i][1]表示第i条road的两端
void makeset(int num){
int i;
for(i=;i<=num;i++)
father[i]=i;
}
int findset(int x){
if(x!=father[x]) father[x]=findset(father[x]);
return father[x];
}
void joinset(int x,int y){
x=findset(x);
y=findset(y);
if(x==y) return ;
else{
father[y]=x;
}
} int main(){
freopen("in.txt","r",stdin);
int i,tmp,j;
while(cin>>n>>m>>k){
for(i=;i<m;i++){
cin>>road[i][]>>road[i][];
} for(i=;i<k;i++){
makeset(n);
cin>>tmp;
for(j=;j<m;j++){
if(tmp!=road[j][] && tmp!=road[j][]) joinset(road[j][],road[j][]);
} int num=;
for(j=;j<=n;j++){
if(father[j]==j) num++;
}
cout<<num-<<endl;//去掉一个结点-1,连接-1
}
}
return ;
}
DFS
#include<iostream>
#include<cstdio>
#include<cstring>
//AC了
using namespace std;
int n,m,k;
int mp[][];
int u[]; void dfs(int v){
u[v]=;
int i;
for(i=;i<=n;i++){
if(u[i]== && mp[v][i]>)
dfs(i);
}
}
int dfsTraverse(int s){
int i,cnt=;
memset(u,,sizeof(u)); for(i=;i<=n;i++){
if(mp[i][s]>) mp[i][s]=mp[s][i]=-;
} for(i=;i<=n;i++){
if(i!=s && u[i]==){
dfs(i);
cnt++;
}
} for(i=;i<=n;i++){
if(mp[i][s]<) mp[i][s]=mp[s][i]=;
} return cnt-;
} int main(){
freopen("in.txt","r",stdin);
int i,tmp;
while(cin>>n>>m>>k){
memset(mp,,sizeof(mp));
for(i=;i<m;i++){
int t1,t2;
cin>>t1>>t2;
mp[t1][t2]=mp[t2][t1]=;//这里手误了
}
for(i=;i<k;i++){
cin>>tmp;
int num = dfsTraverse(tmp);
cout<<num<<endl;
}
}
return ;
}
PAT 解题报告 1013. Battle Over Cities (25)的更多相关文章
- PAT (Advanced Level) 1013. Battle Over Cities (25)
并查集判断连通性. #include<iostream> #include<cstring> #include<cmath> #include<algorit ...
- 【PAT甲级】1013 Battle Over Cities (25 分)(并查集,简单联通图)
题意: 输入三个整数N,M,K(N<=1000,第四个数据1e5<=M<=1e6).有1~N个城市,M条高速公路,K次询问,每次询问输入一个被敌军占领的城市,所有和该城市相连的高速公 ...
- PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- 1013 Battle Over Cities (25分) DFS | 并查集
1013 Battle Over Cities (25分) It is vitally important to have all the cities connected by highways ...
- PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]
题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...
- PAT A 1013. Battle Over Cities (25)【并查集】
https://www.patest.cn/contests/pat-a-practise/1013 思路:并查集合并 #include<set> #include<map> ...
- PAT甲题题解-1013. Battle Over Cities (25)-求联通分支个数
题目就是求联通分支个数删除一个点,剩下联通分支个数为cnt,那么需要建立cnt-1边才能把这cnt个联通分支个数求出来怎么求联通分支个数呢可以用并查集,但并查集的话复杂度是O(m*logn*k)我这里 ...
- 【PAT Advanced Level】1013. Battle Over Cities (25)
这题给定了一个图,我用DFS的思想,来求出在图中去掉某个点后还剩几个相互独立的区域(连通子图). 在DFS中,每遇到一个未访问的点,则对他进行深搜,把它能访问到的所有点标记为已访问.一共进行了多少次这 ...
- PAT 解题报告 1052. Linked List Sorting (25)
1052. Linked List Sorting (25) A linked list consists of a series of structures, which are not neces ...
随机推荐
- MySQL binlog-do-db选项是危险的
很多人通过 binlog-do-db, binlog-ignore-db, replicate-do-db 和 replicate-ignore-db 来过滤复制(某些数据库), 尽管有些使用, ...
- php浮点数计算问题
如果用php的+-*/计算浮点数的时候,可能会遇到一些计算结果错误的问题,比如echo intval( 0.58*100 );会打印57,而不是58,这个其实是计算机底层二进制无法精确表示浮点数的一个 ...
- Mysql 常用命令集
1.mysqlbinlog工具使用方法如下: 先使用 show binary logs 查看 在使用导出命令 mysqlbinlog -R -uroot -pxxxx -hxxx.xxx.xxx.xx ...
- 如何在html中插入视频
如何在html中插入视频 1,插入优酷视频: 在优酷分享界面有个html代码,直接复制放入body中,定义div的align居中即可 2.插入本地视频:用video属性 用mp4格式 <vid ...
- 蓝牙—GAP(Generic Access Profile)
1.简介 下图可见GAP在蓝牙协议中的位置和关系 LE中GAP共有四个角色: <1> Boradcaster:发送advertising 事件的设备 <2>Observer:接 ...
- php获得文件夹下所有文件的递归算法
function my_scandir($dir){ $files=array(); if(is_dir($dir)) { if($handle=opendir($dir)) { while(($fi ...
- 20145211 《Java程序设计》第4周学习总结——园日涉以成趣
编程思想DRY和Once and Only Once DRY DRY原则的为"每一个知识都必须在系统内必须是单一的,明确的,权威的,具有代表性.当DRY的原则成功应用,在系统中,任何单一元素 ...
- [LeetCode] Longest Palindromic Substring(manacher algorithm)
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- PHP运行错最有效解决办法Fatal error: Out of memory (allocated 786432) (tried to allocate 98304 bytes) in H:\freehost\zhengbao2\web\includes\lib_common.php on line 744
原文 PHP运行错最有效解决办法Fatal error: Out of memory (allocated 6029312) Fatal error: Out of memory (allocated ...
- CentOS 6.3下PostgreSQL 的安装与配置
一.简介 PostgreSQL 是一种非常复杂的对象-关系型数据库管理系统(ORDBMS),也是目前功能最强大,特性最丰富和最复杂的自由软件数据库系统.有些特性甚至连商业数据库都不具备.这个起源于伯克 ...