区间dp, 属于dp的一种,顾名思义,便是对区间处理的dp,其中石子归并,括号匹配,整数划分最为典型。

(1)石子归并

dp三要素:阶段,状态,决策。

首先我们从第i堆石子到第j堆石子合并所花费的最小费用设为dp[i][j], 然后去想状态转移方程,dp[i][j]必然有两堆石子合并而来, 那么我们很快就可以推出状态转移方程为dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + s);(s为两堆石子的总和)

下面附上代码

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = + ;
int a[N], dp[N][N], n, sum[N]; void work(){
for(int l = ; l <= n; l ++){
for(int i = ; i + l <= n; i ++){
int j = i + l;
for(int k = i; k <= j; k ++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+][j] + sum[j] - sum[i-]);
}
}
}
printf("%d\n", dp[][n]);
} int main(){
while(scanf("%d", &n) == ){
memset(dp, 0x3f,sizeof(dp));
for(int i = ; i <= n; i ++){
scanf("%d", a + i);
sum[i] = sum[i-] + a[i];
dp[i][i] = ;
}
work();
}
return ;
}

当然还有变形题

思路差不多只不过把两个数的和改成积(ps:在处理前缀和的时候千万别取余,否则可能出现负数)

附上代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = + ;
int a[N], dp[N][N], n, ans, sum[N]; void work(){
for(int l = ; l <= n; l ++){
for(int i = ; i <= n - l + ; i ++){
int j = i + l - ;
for(int k = i; k < j; k ++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+][j] + ((sum[j] - sum[k])%)*((sum[k] - sum[i-])%));
}
}
}
printf("%d\n", dp[][n]);
} int main(){
while(scanf("%d", &n) == ){
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
dp[i][j] = ( << );
for(int i = ; i <= n; i ++){
scanf("%d", a + i);
sum[i] = sum[i-] + a[i];
dp[i][i] = ;
}
work();
}
return ;
}

(2)括号匹配

这题解释括号匹配的例题,只要找到这个字符串中括号最大匹配量t,就可以得出答案,设长度为l,则ans = l - t;

我们设dp[i][j] 为第i位到第j位最大的括号匹配量, 则他的转移方程为

dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);

当然如果第i位刚好与第j位刚好匹配

则dp[i][j] = dp[i+1][j-1] + 2;

下面附上代码

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; string s; int n, dp[][]; int main(){
int T;
scanf("%d", &T);
while(T--){
cin >> s;
memset(dp, , sizeof(dp));
for(int l = ; l < s.size(); l ++){
for(int i = ; i + l < s.size(); i ++){
int j = i + l;
if(s[i] == '(' && s[j] == ')')
dp[i][j] = dp[i+][j-] + ;
if(s[i] == '[' && s[j] == ']')
dp[i][j] = dp[i+][j-] + ;
for(int k = i; k <= j; k ++){
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+][j]);
}
}
}
printf("%d\n", s.size() - dp[][s.size()-]);
}
return ;
}

(3)整数划分

当初一看到这一题的时候感觉像是搜索题,仔细一想才明白是一道区间dp题,既然是dp,当然要先找到状态了,设dp[i][j]为前i位中存在j个乘号

我们以a[i][j]表示第i位到第j位的值,则可以推出状态转移方程为dp[i][j] = max(dp[i][j], dp[i][k] * a[k+1][j]);

附上代码

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = + ; ll a[N][N], dp[N][N];
int n, T, c[N];
char s[N]; void work(){
for(int j = ; j < n; j ++){
for(int i = ; i <= strlen(s); i ++){
for(int k = ; k <= i; k ++){
if(j==)
dp[i][] = a[][i];
else
dp[i][j] = max(dp[i][j], dp[k][j-] * a[k+][i]);
/*for(int p = 1; p <= strlen(s); p ++){
for(int q = 0; q < n; q ++)
printf("%d ", dp[p][q]);
puts("");
}*/
}
}
}
printf("%lld\n", dp[strlen(s)][n-]);
} int main(){
scanf("%d", &T);
while(T--){
scanf("%s%d" , s, &n);
int flag = ;
if(n > strlen(s)){
printf("0\n");
continue;
}
memset(a, , sizeof(a));
memset(dp, , sizeof(dp));
for(int i = ; i < strlen(s); i ++)
c[i+] = s[i] - '';
for(int i = ; i <= strlen(s); i ++){
for(int j = i; j <= strlen(s); j ++){
a[i][j] = a[i][j-] * + c[i];
}
}
}
/*for(int i = 1; i <= strlen(s); i ++){
for(int j = i; j <= strlen(s); j ++)
printf("%I64d ", a[i][j]);
puts("");
}*/
work();
}
return ;
}

区间dp的典例的更多相关文章

  1. POJ - 3280Cheapest Palindrome-经典区间DP

    POJ - 3280 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & ...

  2. 以石子合并为例的区间DP

    区间DP,是一类具有较为固定解法的DP,一般的思路都是: first.初始化区间长度为1的情况(一般区间长度为1的较易于初始化) second. for(枚举区间长度2~n){ for(枚举左端点){ ...

  3. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

  4. light oj 1422 Halloween Costumes (区间dp)

    题目链接:http://vjudge.net/contest/141291#problem/D 题意:有n个地方,每个地方要穿一种衣服,衣服可以嵌套穿,一旦脱下的衣服不能再穿,除非穿同样的一件新的,问 ...

  5. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  6. [kuangbin带你飞]专题二十二 区间DP

            ID Origin Title   17 / 60 Problem A ZOJ 3537 Cake   54 / 105 Problem B LightOJ 1422 Hallowee ...

  7. HDU 5151 Sit sit sit 区间DP + 排列组合

    Sit sit sit 问题描述 在一个XX大学中有NN张椅子排成一排,椅子上都没有人,每张椅子都有颜色,分别为蓝色或者红色. 接下来依次来了NN个学生,标号依次为1,2,3,...,N. 对于每个学 ...

  8. cdoj 1131 男神的礼物 区间dp

    男神的礼物 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1131 Descr ...

  9. 合并傻子//区间dp

    P1062 合并傻子 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 从前有一堆傻子,钟某人要合并他们~但是,合并傻子是要掉RP的...... 描述 在一个园 ...

随机推荐

  1. 敏捷软件开发:原则、模式与实践——第10章 LSP:Liskov替换原则

    第10章 LSP:Liskov替换原则    Liskov替换原则:子类型(subtype)必须能够替换掉它们的基类型(base type). 10.1 违反LSP的情形 10.1.1 简单例子 对L ...

  2. nginx location匹配规则

    谢谢作者的分享精神,原文地址:http://www.nginx.cn/115.html location匹配命令 ~      #波浪线表示执行一个正则匹配,区分大小写~*    #表示执行一个正则匹 ...

  3. Oracle定义varchar2()类型存储汉字的长度问题

    varchar2最大是4000字节,那么就看你的oracle字符集:(select userenv('language') from dual;)如果字符集是16位编码的,ZHS16GBK,那么每个字 ...

  4. Effective Java 55 Optimize judiciously

    Principle Strive to write good programs rather than fast ones. Strive to avoid design decisions that ...

  5. Java内存模型的历史变迁

    转自:http://www.csdn.net/article/2015-05-20/2824722-Java 摘要:本文通过介绍Java的新/旧内存模型,来展示Java技术的历史变迁. 本文通过介绍J ...

  6. jquery-qrcode生成二维码

    一.jquery-qrcode jquery-qrcode是一个为浏览器生成二维码的jquery插件.我们很容易将它集成到我们的应用.该插件也可以独立使用,也比较小.它是直接在客户端生成二维码生成.所 ...

  7. Less里css表达式的写法

    项目中用的grunt-contrib-less, 写了以下less代码 .mapfix{ position: fixed; top:10px; width: 430px; z-index: 100; ...

  8. k-means算法初识

    基础知识: K-means聚类算法 聚类,简单地说就是把相似的东西分到一组.同 Classification (分类)不同,对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”. ...

  9. css中元素居中总结

    很多时候,我们需要让元素居中显示:1. 一段文本的水平居中,2. 一张图片的水平居中,3. 一个块级元素的水平居中:4. 单行文本的竖直居中,5. 不确定高度的一段文本竖直居中,6. 确定高度的块级元 ...

  10. Python版任意进制转换

    def decimalToAny(num,n): baseStr = {10:"a",11:"b",12:"c",13:"d&qu ...