区间dp, 属于dp的一种,顾名思义,便是对区间处理的dp,其中石子归并,括号匹配,整数划分最为典型。

(1)石子归并

dp三要素:阶段,状态,决策。

首先我们从第i堆石子到第j堆石子合并所花费的最小费用设为dp[i][j], 然后去想状态转移方程,dp[i][j]必然有两堆石子合并而来, 那么我们很快就可以推出状态转移方程为dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + s);(s为两堆石子的总和)

下面附上代码

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = + ;
int a[N], dp[N][N], n, sum[N]; void work(){
for(int l = ; l <= n; l ++){
for(int i = ; i + l <= n; i ++){
int j = i + l;
for(int k = i; k <= j; k ++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+][j] + sum[j] - sum[i-]);
}
}
}
printf("%d\n", dp[][n]);
} int main(){
while(scanf("%d", &n) == ){
memset(dp, 0x3f,sizeof(dp));
for(int i = ; i <= n; i ++){
scanf("%d", a + i);
sum[i] = sum[i-] + a[i];
dp[i][i] = ;
}
work();
}
return ;
}

当然还有变形题

思路差不多只不过把两个数的和改成积(ps:在处理前缀和的时候千万别取余,否则可能出现负数)

附上代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = + ;
int a[N], dp[N][N], n, ans, sum[N]; void work(){
for(int l = ; l <= n; l ++){
for(int i = ; i <= n - l + ; i ++){
int j = i + l - ;
for(int k = i; k < j; k ++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+][j] + ((sum[j] - sum[k])%)*((sum[k] - sum[i-])%));
}
}
}
printf("%d\n", dp[][n]);
} int main(){
while(scanf("%d", &n) == ){
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
dp[i][j] = ( << );
for(int i = ; i <= n; i ++){
scanf("%d", a + i);
sum[i] = sum[i-] + a[i];
dp[i][i] = ;
}
work();
}
return ;
}

(2)括号匹配

这题解释括号匹配的例题,只要找到这个字符串中括号最大匹配量t,就可以得出答案,设长度为l,则ans = l - t;

我们设dp[i][j] 为第i位到第j位最大的括号匹配量, 则他的转移方程为

dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);

当然如果第i位刚好与第j位刚好匹配

则dp[i][j] = dp[i+1][j-1] + 2;

下面附上代码

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; string s; int n, dp[][]; int main(){
int T;
scanf("%d", &T);
while(T--){
cin >> s;
memset(dp, , sizeof(dp));
for(int l = ; l < s.size(); l ++){
for(int i = ; i + l < s.size(); i ++){
int j = i + l;
if(s[i] == '(' && s[j] == ')')
dp[i][j] = dp[i+][j-] + ;
if(s[i] == '[' && s[j] == ']')
dp[i][j] = dp[i+][j-] + ;
for(int k = i; k <= j; k ++){
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+][j]);
}
}
}
printf("%d\n", s.size() - dp[][s.size()-]);
}
return ;
}

(3)整数划分

当初一看到这一题的时候感觉像是搜索题,仔细一想才明白是一道区间dp题,既然是dp,当然要先找到状态了,设dp[i][j]为前i位中存在j个乘号

我们以a[i][j]表示第i位到第j位的值,则可以推出状态转移方程为dp[i][j] = max(dp[i][j], dp[i][k] * a[k+1][j]);

附上代码

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = + ; ll a[N][N], dp[N][N];
int n, T, c[N];
char s[N]; void work(){
for(int j = ; j < n; j ++){
for(int i = ; i <= strlen(s); i ++){
for(int k = ; k <= i; k ++){
if(j==)
dp[i][] = a[][i];
else
dp[i][j] = max(dp[i][j], dp[k][j-] * a[k+][i]);
/*for(int p = 1; p <= strlen(s); p ++){
for(int q = 0; q < n; q ++)
printf("%d ", dp[p][q]);
puts("");
}*/
}
}
}
printf("%lld\n", dp[strlen(s)][n-]);
} int main(){
scanf("%d", &T);
while(T--){
scanf("%s%d" , s, &n);
int flag = ;
if(n > strlen(s)){
printf("0\n");
continue;
}
memset(a, , sizeof(a));
memset(dp, , sizeof(dp));
for(int i = ; i < strlen(s); i ++)
c[i+] = s[i] - '';
for(int i = ; i <= strlen(s); i ++){
for(int j = i; j <= strlen(s); j ++){
a[i][j] = a[i][j-] * + c[i];
}
}
}
/*for(int i = 1; i <= strlen(s); i ++){
for(int j = i; j <= strlen(s); j ++)
printf("%I64d ", a[i][j]);
puts("");
}*/
work();
}
return ;
}

区间dp的典例的更多相关文章

  1. POJ - 3280Cheapest Palindrome-经典区间DP

    POJ - 3280 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & ...

  2. 以石子合并为例的区间DP

    区间DP,是一类具有较为固定解法的DP,一般的思路都是: first.初始化区间长度为1的情况(一般区间长度为1的较易于初始化) second. for(枚举区间长度2~n){ for(枚举左端点){ ...

  3. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

  4. light oj 1422 Halloween Costumes (区间dp)

    题目链接:http://vjudge.net/contest/141291#problem/D 题意:有n个地方,每个地方要穿一种衣服,衣服可以嵌套穿,一旦脱下的衣服不能再穿,除非穿同样的一件新的,问 ...

  5. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  6. [kuangbin带你飞]专题二十二 区间DP

            ID Origin Title   17 / 60 Problem A ZOJ 3537 Cake   54 / 105 Problem B LightOJ 1422 Hallowee ...

  7. HDU 5151 Sit sit sit 区间DP + 排列组合

    Sit sit sit 问题描述 在一个XX大学中有NN张椅子排成一排,椅子上都没有人,每张椅子都有颜色,分别为蓝色或者红色. 接下来依次来了NN个学生,标号依次为1,2,3,...,N. 对于每个学 ...

  8. cdoj 1131 男神的礼物 区间dp

    男神的礼物 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1131 Descr ...

  9. 合并傻子//区间dp

    P1062 合并傻子 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 从前有一堆傻子,钟某人要合并他们~但是,合并傻子是要掉RP的...... 描述 在一个园 ...

随机推荐

  1. centos性能监控系列二:Collectl初解

    对于一个 Linux 系统管理员来说确保自己管理的系统处于一个良好的状态是其首要责任. Linux 系统管理员可以找到有很多工具来帮助自己监控和显示系统中的进程,例如 top 和 htop 今天介绍一 ...

  2. 《笨办法学python第三版》习题26,原错误代码及正确代码

    #import ex25 1 def break_words(stuff): """This function will break up words for us.&q ...

  3. python操作db2和mysql ,ibm_db

    我需要提取mysql和db2的数据进行对比,所以需要用python对其都进行操作. python对mysql进行操作应该没什么问题,就是安装drive后就可以了,在上一篇中有讲安装python-mys ...

  4. Effective Java 46 Prefer for-each loops to traditional for loops

    Prior to release 1.5, this was the preferred idiom for iterating over a collection: // No longer the ...

  5. nginx根据IP限制访问

    nginx有两个模块可以控制访问 HttpLimitZoneModule    限制同时并发访问的数量 HttpLimitReqModule     限制访问数据,每秒内最多几个请求 http{ ## ...

  6. 20 Web 编程 - 《Python 核心编程》

  7. 【C#】2.算法温故而知新 - 冒泡排序

    冒泡排序可以很好的解决前面提到的简单桶排序的2个问题,冒泡排序的基本思想是:每次比较两个相邻的元素,如果它们的顺序错误就把它们交换过来. 该算法的核心部分是双重嵌套循环,其时间复杂度是O(N²). 缺 ...

  8. 【Ext.Net学习笔记】01:在ASP.NET WebForm中使用Ext.Net

    Ext.NET是基于跨浏览器的ExtJS库和.NET Framework的一套支持ASP.NET AJAX的开源Web控件,包含有丰富的Ajax运用,其前身是Coolite. 下载地址:http:// ...

  9. 倍增法-lca codevs 1036 商务旅行

    codevs 1036 商务旅行  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 某首都城市的商人要经常到各城镇去做生意 ...

  10. 孙鑫视频学习:对第10章设置线宽时为什么不调用UpDateData(TRUE)的理解

    在第10章10.2.1小节中,首先分别对视图类和对话框类添加了一个名为m_nLineWidth的int型变量,再将用户在CSetting dlg对话框的edit控件中输入的线宽值记录在dlg.m_nL ...