概述

Mask-RCNN,是一个处于像素级别的目标检测手段.目标检测的发展主要历程大概是:RCNN,Fast-RCNN,Fster-RCNN,Darknet,YOLO,YOLOv2,YOLO3(参考目标检测:keras-yolo3之制作VOC数据集训练指南),Mask-RCNN.本文参考的论文来源于https://arxiv.org/abs/1703.06870.

下面,开始制作用于Mask训练的数据集。

首先展示一下成果,由于个人设备有限,cpu仅迭代5次的结果。

使用labelme进行图片标注

注意:

  **标注之前将图片的名字通过linux或者python脚本改名,改为有序即可,我的命名格式为升序,下面为linux脚本。

i=; for x in *; do mv $x $i.png; let i=i+; done

  **将所有图片的尺寸改为600*800.(一般设置为2的整数次幂,否则,后序训练时会报错).脚本自取https://github.com/hyhouyong/Mask-RCNN/blob/master/train_data/resize.py

pip install labelme
labelme

1.新建文件夹train_data,并创建子文件夹json,将标注后的json格式的文件放入该文件夹中

2.当你安装lableme的时候,默认安装到了Anaconda目录下/envs/名字/Scripts/下,使用labelme_json_to_dataset.exe将json文件转化为5个文件

  转化方法,切换到labelme安装目录下,执行:

labelme_json_to_dataset.exe [文件名]

注意:文件名为绝对路径   . eg:(chineseocr) D:\anaconda\envs\chineseocr\Scripts>labelme_json_to_dataset.exe F:\samples\shapes\train_data\json\1.json

  ***这样只能一次转化一个json文件,故开始批量转。

    切换到D:\anaconda\envs\py3.6\Lib\site-packages\labelme\cli下,修改json_to_dataset.py,然后切换到Scripts,执行命令:

labelme_json_to_dataset.exe [存放json文件夹的绝对路径]

  ***生成的json文件夹会在当前目录,将文件夹拷贝到train_data下的labelme_json文件夹中

import argparse
import json
import os
import os.path as osp
import warnings import PIL.Image
import yaml from labelme import utils
import base64 def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.")
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args() json_file = args.json_file
if args.out is None:
out_dir = osp.basename(json_file).replace('.', '_')
out_dir = osp.join(osp.dirname(json_file), out_dir)
else:
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir) count = os.listdir(json_file)
for i in range(0, len(count)):
path = os.path.join(json_file, count[i])
if os.path.isfile(path):
data = json.load(open(path)) if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value # label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln)
for ln, lv in label_name_to_value.items()]
lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(count[i]).replace('.', '_')
out_dir = osp.join(osp.dirname(count[i]), out_dir)
if not osp.exists(out_dir):
os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
#PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
if __name__ == '__main__':
main()

3.生成Mask文件,由于labelme生成的掩码标签 label.png为16位存储,opencv默认读取8位,需要将16位转8位

   脚本自取https://github.com/hyhouyong/Mask-RCNN/blob/master/train_data/uint16_to_uint8.py

4.最后生成的文件夹结构如下:

开始训练:

1.安装环境

pip install -r requirements.txt

2.下载预训练模型mask_rcnn_coco.h5

  百度云链接:https://pan.baidu.com/s/1CmcfVleyw7QpVZRo3JxS2w   提取码:tf7f

3.执行命令:

python train_shape.py

开始测试:

1.将想要测试的图片放入imges文件夹中

2.执行命令:

python test_shape.py

详细代码见:我的github自取。欢迎Fork和Star并交流

Mask-RCNN:教你如何制作自己的数据集进行像素级的目标检测的更多相关文章

  1. 多目标检测分类 RCNN到Mask R-CNN

    最近做目标检测需要用到Mask R-CNN,之前研究过CNN,R-CNN:通过论文的阅读以及下边三篇博客大概弄懂了Mask R-CNN神经网络.想要改进还得努力啊... 目标检测的经典网络结构,顺序大 ...

  2. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  3. 物体检测丨从R-CNN到Mask R-CNN

    这篇blog是我刚入目标检测方向,导师发给我的文献导读,深入浅出总结了object detection two-stage流派Faster R-CNN的发展史,读起来非常有趣.我一直想翻译这篇博客,在 ...

  4. Faster R-CNN:详解目标检测的实现过程

    本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https:// ...

  5. 目标检测--之RCNN

    目标检测--之RCNN 前言,最近接触到的一个项目要用到目标检测,还有我的科研方向caption,都用到这个,最近电脑在windows下下载数据集,估计要一两天,也不能切换到ubuntu下撸代码~.所 ...

  6. (五)目标检测算法之Faster R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  7. (四)目标检测算法之Fast R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  8. 手把手教你使用LabVIEW实现Mask R-CNN图像实例分割

    前言 前面给大家介绍了使用LabVIEW工具包实现图像分类,目标检测,今天我们来看一下如何使用LabVIEW实现Mask R-CNN图像实例分割. 一.什么是图像实例分割? 图像实例分割(Instan ...

  9. 目标检测网络之 Mask R-CNN

    Mask R-CNN 论文Mask R-CNN(ICCV 2017, Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick, arXiv:170 ...

随机推荐

  1. 零元学Expression Blend 4 - Chapter 19 如何让做好的Blend专案变Silverlight网页

    原文:零元学Expression Blend 4 - Chapter 19 如何让做好的Blend专案变Silverlight网页 本章将教大家如何把制作好的Blend专案变为可以让任何人在网际网路浏 ...

  2. WPF应用程序嵌入第三方exe

    把其它应用嵌入到C#窗口 源代码-CSDN下载 https://download.csdn.net/download/aiqinghee/10652732 WPF应用程序嵌入第三方exe - gao2 ...

  3. oracle利用透明网关访问mssql

    遇到一个客户,有个需求,想将mssql中的数据抽取到oracle中.经过上网查找,感觉gateway这个工具可以实现,因此就搭建实验环境进行测试.首先在oracle delivery上面下载对应的安装 ...

  4. 想让一个Widget成为模态,我们只需要对其设置setAttribute(Qt::WA_ShowModal, true);

    想让一个Widget成为模态,我们只需要对其设置: setAttribute(Qt::WA_ShowModal, true); 注意:这是QWidget的成员函数 ,也就是说,QWidget可以显示为 ...

  5. Delphi访问活动目录(使用COM,活动目录Active Directory是用于Windows Server的目录服务)

    活动目录Active Directory是用于Windows Server的目录服务,它存储着网络上各种对象的有关信息,并使该信息易于管理员和用户查找及使用.Active Directory使用结构化 ...

  6. Tencent://Message/协议的实现原理(Windows提供协议注册)

    腾讯官方通过 Tencent://Message/协议可以让QQ用户显示QQ/TM的在线状态发布在互联网上:并且点击 XXX  ,不用加好友也可以聊天 官方链接: http://is.qq.com/w ...

  7. SpringBoot整合Redis注意的一些问题

    1:ERR value is not an integer or out of range 1-1:背景 使用redisTemplate.opsForValue().increment(key, de ...

  8. 10-pymysql的应用

    import pymysql # user = input('请输入用户名:') # pwd = input('请输入密码:') # 1.创建连接 conn = pymysql.connect(hos ...

  9. spring 5.x 系列第3篇 —— spring AOP (xml配置方式)

    文章目录 一.说明 1.1 项目结构说明 1.2 依赖说明 二.spring aop 2.1 创建待切入接口及其实现类 2.2 创建自定义切面类 2.3 配置切面 2.4 测试切面 附: 关于切面表达 ...

  10. 系统学习 Java IO (十五)----字符读写 Reader/Writer 其他子类

    目录:系统学习 Java IO---- 目录,概览 跟踪行号的缓冲字符输入流 LineNumberReader LineNumberReader 类是一个 BufferedReader ,用于跟踪读取 ...