Description

Farmer John is continuing to ponder the issue of cows crossing the road through his farm, introduced
 in the preceding problem. He realizes that interaction between some pairs of breeds is actually acc
eptable if the breeds are friendly, a property that turns out to be easily characterized in terms of
 breed ID: breeds aa and bb are friendly if |a-b|≤4, and unfriendly otherwise. It is ok for cows to
 wander into fields designated for other breeds, as long as they are friendly.Given the ordering of 
N fields on both sides of the road through FJ's farm (again, with exactly one field for each breed o
n each side), please help FJ determine the maximum number of crosswalks he can draw over his road, s
uch that no two intersect, and such that each crosswalk joins a pair of fields containing two breeds
 that are friendly. Each field can be accessible via at most one crosswalk (so crosswalks don't meet
 at their endpoints).
上下有两个长度为n、位置对应的序列A、B,
其中数的范围均为1~n。若abs(A[i]-B[j]) <= 4,
则A[i]与B[j]间可以连一条边。现要求在边与边不相交的情况下的最大的连边数量。
n <= 10^5。

Input

The first line of input contains N (1≤N≤100,0000). 
The next N lines describe the order, by breed ID, of fields on one side of the road; 
each breed ID is an integer in the range 1…N 
The last N lines describe the order, by breed ID, of the fields on the other side of the road. 
Each breed ID appears exactly once in each ordering.
注意:两个序列都是全排列

Output

Please output the maximum number of disjoint "friendly crosswalks" Farmer John can draw across the road.

Sample Input

6
1
2
3
4
5
6
6
5
4
3
2
1

Sample Output

5
 

 
如果一边的一个位置只可以匹配另一边的一个位置,那么这个问题就是简单的最长上升子序列问题了。
但是这题不同,一个点可以匹配多个点,但是点数不多,于是也可以转化成上面的问题。
但是问题就是,如何保证一个点只被匹配一次,其实简单,我们把一边的一个点可以匹配的点的位置从大到小排序,这样就可以保证这些数里在最长上升子序列中最多只有一个出现。
转化甚是巧妙。
 

 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define reg register
inline char gc() {
static const int bs = << ;
static unsigned char buf[bs], *st, *ed;
if (st == ed) ed = buf + fread(st = buf, , bs, stdin);
return st == ed ? EOF : *st++;
}
#define gc getchar
inline int read() {
int res=;char ch=gc();bool fu=;
while(!isdigit(ch))fu|=(ch=='-'), ch=gc();
while(isdigit(ch))res=(res<<)+(res<<)+(ch^), ch=gc();
return fu?-res:res;
}
#define N 100005
int n;
int a[N], b[N];
int pos[N];
int c[N*], cnt, tmp[];
int low[N*], ans; int main()
{
n = read();
for (reg int i = ; i <= n ; i ++) a[i] = read();
for (reg int i = ; i <= n ; i ++) pos[b[i] = read()] = i;
for (reg int i = ; i <= n ; i ++)
{
int top = ;
for (reg int j = max(, a[i] - ) ; j <= min(n, a[i] + ) ; j ++)
tmp[++top] = pos[j];
sort(tmp + , tmp + + top);
for (reg int j = top ; j >= ; j --) c[++cnt] = tmp[j];
}
low[++ans] = c[];
for (reg int i = ; i <= cnt ; i ++)
{
if (c[i] > low[ans]) low[++ans] = c[i];
else {
int t = lower_bound(low + , low + + ans, c[i]) - low;
low[t] = c[i];
}
}
cout << ans << endl;
return ;
}

[BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II的更多相关文章

  1. [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II dp

    4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II Time Limit: 10 Sec  Memory Limit: 128 MBSubmi ...

  2. BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

  3. 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp

    题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...

  4. BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

  5. [BZOJ4993||4990] [Usaco2017 Feb]Why Did the Cow Cross the Road II(DP + 线段树)

    传送门 f[i][j]表示当前第i个,且最后一个位置连接到j 第一维可以省去,能连边的点可以预处理出来,dp可以用线段树优化 #include <cstdio> #include < ...

  6. [Usaco2017 Feb]Why Did the Cow Cross the Road II (Platinum)

    Description Farmer John is continuing to ponder the issue of cows crossing the road through his farm ...

  7. [Usaco2017 Feb]Why Did the Cow Cross the Road II (Gold)

    Description 上下有两个长度为n.位置对应的序列A.B, 其中数的范围均为1~n.若abs(A[i]-B[j])<= 4,则A[i]与B[j]间可以连一条边. 现要求在边与边不相交的情 ...

  8. 4989: [Usaco2017 Feb]Why Did the Cow Cross the Road

    题面:4989: [Usaco2017 Feb]Why Did the Cow Cross the Road 连接 http://www.lydsy.com/JudgeOnline/problem.p ...

  9. [BZOJ4989][Usaco2017 Feb]Why Did the Cow Cross the Road 树状数组维护逆序对

    4989: [Usaco2017 Feb]Why Did the Cow Cross the Road Time Limit: 10 Sec  Memory Limit: 256 MBSubmit:  ...

随机推荐

  1. FastReport安装包下载、安装、去除使用限制以及工具箱中添加控件

    场景 FastReport .NET 2019是一款适用于Windows Forms, ASP.NET和MVC框架的功能齐全的报表分析解决方案.可用在Microsoft Visual Studio 2 ...

  2. 搜索专题题解(FJUT - OJ 17级搜索强化训练)

    题目连接:http://120.78.128.11/Contest.jsp?cid=221#H 题目都比较难,每道题都很经典,我也做的很慢,这篇博文算是个收录.具体题目题解点击下面超链接吧. 一.Br ...

  3. Day 21 进程管理

    1.什么是进程 比如: 开发写的代码我们称为程序,那么将开发的代码运行起来.我们称为进程. 总结一句话就是: 当我们运行一个程序,那么我们将运行的程序叫进程. PS1: 当程序运行为进程后,系统会为该 ...

  4. MOOC 数据库系统笔记(一):初步认识数据库系统

    概述 什么是数据库 数据库是电子化信息的集合 数据库起源于规范化"表(Table)"的处理. Table:以按行按列形式组织及展现的数据. E.F.Codd,基于对"表( ...

  5. Spring——依赖注入(DI)详解

    声明:本博客仅仅是一个初学者的学习记录.心得总结,其中肯定有许多错误,不具有参考价值,欢迎大佬指正,谢谢!想和我交流.一起学习.一起进步的朋友可以加我微信Liu__66666666 这是简单学习一遍之 ...

  6. Mysql学习笔记整理之选用B+tree结构

    为什么mysql不使用平衡二叉树? 数据处的深度决定着他的IO操作次数,IO操作耗时大 每一个磁盘块保存的数据量太小 B+Tree和B-Tree的区别? B+树几点关键字搜索采用闭合区间 B+树非叶节 ...

  7. 2019windows上安装Mac OS 10.14过程详细截图

    之前VMware12里面的Mac OS10.10升级后,键盘鼠标就用不了了.试了几次都这样,只能重装VMware14, 安装Mac OS 10.14系统.把步骤截下图,分享一下. 一.材料准备 1.虚 ...

  8. selenium-03-02操作元素-等待

    1.最直接普通的方式:这个是设置固定的等待时间    Thread.sleep(1000);   2.隐式等待方式(implicitlyWait):设置脚本在查找元素时的最大等待时间:    driv ...

  9. [AspNetCore 3.0] 在RazorPages/MVC 中使用 Blazor (Razor组件)

    开发环境 Vs2019 16.3.1 dotnetcore 3.0 一.开始 新建webapp项目 dotnet new webapp -o projectname 或Vs 中新建项目选择 Web应用 ...

  10. 详解Java多线程锁之synchronized

    synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法. synchronized的四种使用方式 修饰代码块:被修饰的代码块称为同步语句块,其作用的范围是大括号{}括 ...