Description

Farmer John is continuing to ponder the issue of cows crossing the road through his farm, introduced
 in the preceding problem. He realizes that interaction between some pairs of breeds is actually acc
eptable if the breeds are friendly, a property that turns out to be easily characterized in terms of
 breed ID: breeds aa and bb are friendly if |a-b|≤4, and unfriendly otherwise. It is ok for cows to
 wander into fields designated for other breeds, as long as they are friendly.Given the ordering of 
N fields on both sides of the road through FJ's farm (again, with exactly one field for each breed o
n each side), please help FJ determine the maximum number of crosswalks he can draw over his road, s
uch that no two intersect, and such that each crosswalk joins a pair of fields containing two breeds
 that are friendly. Each field can be accessible via at most one crosswalk (so crosswalks don't meet
 at their endpoints).
上下有两个长度为n、位置对应的序列A、B,
其中数的范围均为1~n。若abs(A[i]-B[j]) <= 4,
则A[i]与B[j]间可以连一条边。现要求在边与边不相交的情况下的最大的连边数量。
n <= 10^5。

Input

The first line of input contains N (1≤N≤100,0000). 
The next N lines describe the order, by breed ID, of fields on one side of the road; 
each breed ID is an integer in the range 1…N 
The last N lines describe the order, by breed ID, of the fields on the other side of the road. 
Each breed ID appears exactly once in each ordering.
注意:两个序列都是全排列

Output

Please output the maximum number of disjoint "friendly crosswalks" Farmer John can draw across the road.

Sample Input

6
1
2
3
4
5
6
6
5
4
3
2
1

Sample Output

5
 

 
如果一边的一个位置只可以匹配另一边的一个位置,那么这个问题就是简单的最长上升子序列问题了。
但是这题不同,一个点可以匹配多个点,但是点数不多,于是也可以转化成上面的问题。
但是问题就是,如何保证一个点只被匹配一次,其实简单,我们把一边的一个点可以匹配的点的位置从大到小排序,这样就可以保证这些数里在最长上升子序列中最多只有一个出现。
转化甚是巧妙。
 

 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define reg register
inline char gc() {
static const int bs = << ;
static unsigned char buf[bs], *st, *ed;
if (st == ed) ed = buf + fread(st = buf, , bs, stdin);
return st == ed ? EOF : *st++;
}
#define gc getchar
inline int read() {
int res=;char ch=gc();bool fu=;
while(!isdigit(ch))fu|=(ch=='-'), ch=gc();
while(isdigit(ch))res=(res<<)+(res<<)+(ch^), ch=gc();
return fu?-res:res;
}
#define N 100005
int n;
int a[N], b[N];
int pos[N];
int c[N*], cnt, tmp[];
int low[N*], ans; int main()
{
n = read();
for (reg int i = ; i <= n ; i ++) a[i] = read();
for (reg int i = ; i <= n ; i ++) pos[b[i] = read()] = i;
for (reg int i = ; i <= n ; i ++)
{
int top = ;
for (reg int j = max(, a[i] - ) ; j <= min(n, a[i] + ) ; j ++)
tmp[++top] = pos[j];
sort(tmp + , tmp + + top);
for (reg int j = top ; j >= ; j --) c[++cnt] = tmp[j];
}
low[++ans] = c[];
for (reg int i = ; i <= cnt ; i ++)
{
if (c[i] > low[ans]) low[++ans] = c[i];
else {
int t = lower_bound(low + , low + + ans, c[i]) - low;
low[t] = c[i];
}
}
cout << ans << endl;
return ;
}

[BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II的更多相关文章

  1. [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II dp

    4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II Time Limit: 10 Sec  Memory Limit: 128 MBSubmi ...

  2. BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

  3. 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp

    题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...

  4. BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

  5. [BZOJ4993||4990] [Usaco2017 Feb]Why Did the Cow Cross the Road II(DP + 线段树)

    传送门 f[i][j]表示当前第i个,且最后一个位置连接到j 第一维可以省去,能连边的点可以预处理出来,dp可以用线段树优化 #include <cstdio> #include < ...

  6. [Usaco2017 Feb]Why Did the Cow Cross the Road II (Platinum)

    Description Farmer John is continuing to ponder the issue of cows crossing the road through his farm ...

  7. [Usaco2017 Feb]Why Did the Cow Cross the Road II (Gold)

    Description 上下有两个长度为n.位置对应的序列A.B, 其中数的范围均为1~n.若abs(A[i]-B[j])<= 4,则A[i]与B[j]间可以连一条边. 现要求在边与边不相交的情 ...

  8. 4989: [Usaco2017 Feb]Why Did the Cow Cross the Road

    题面:4989: [Usaco2017 Feb]Why Did the Cow Cross the Road 连接 http://www.lydsy.com/JudgeOnline/problem.p ...

  9. [BZOJ4989][Usaco2017 Feb]Why Did the Cow Cross the Road 树状数组维护逆序对

    4989: [Usaco2017 Feb]Why Did the Cow Cross the Road Time Limit: 10 Sec  Memory Limit: 256 MBSubmit:  ...

随机推荐

  1. springboot postman 对象里传时间格式问题

    主要问题是系列化的问题,在定义时间变量处使用如下的注解即可.导包注意了······ 如果springmvc使用的是com.fasterxml.jackson 的jar包则直接使用一下注解即可 impo ...

  2. 关于mock

    关于mock 一.什么是mock? 通俗来讲,在开发和测试过程中,由于环境不稳定或者协同开发的同事未完成等情况下,有些数据不容易构造或者不容易获取,就创建一个虚拟的对象或者数据样本,用来辅助开发或者测 ...

  3. Qt无边框窗体-模拟模态窗体抖动效果

    目录 一.概述 二.效果展示 三.功能实现 四.相关文章 原文链接:Qt无边框窗体-模拟模态窗体抖动效果 一.概述 用Qt开发windows客户端界面确实是一大利器,兼顾性能的同时,速度相对来说也不错 ...

  4. 过渡 - transition

    过渡 - transition 是变形transfrom其中一种效果,定义为一种状态过渡到另一种状态的过程,今天学习到css3动画,特此记录下过渡的使用和一些效果. 实例1: <div clas ...

  5. mysql-connector-java-5.-bin.jar 下载方法

    访问https://downloads.mysql.com/archives/c-j/,选择相应版本,如图 加油zip即可得到

  6. 【Django】一对多表结构

    1.创建project数据库表 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.co ...

  7. Android adb shell am 命令学习(1)

    am:activity manager 启动Activity,打开或关闭进程,发送广播等操作 为什么学习: 主要应用部分,后台启动对应的package的Activity adb shell am st ...

  8. Spring boot 梳理 -@SpringBootApplication、@EnableAutoConfiguration与(@EnableWebMVC、WebMvcConfigurationSupport,WebMvcConfigurer和WebMvcConfigurationAdapter)

    @EnableWebMvc=继承DelegatingWebMvcConfiguration=继承WebMvcConfigurationSupport 直接看源码,@EnableWebMvc实际上引入一 ...

  9. Redis 的主从同步(复制)

    Redis 的主从同步(复制) Redis 的主从同步(复制) 什么是主从同步(复制) 假设有两个 redis 实例 ⇒ A 和 B B 实例的内容与 A 实例的内容保持同步 那么称 A 实例是主数据 ...

  10. 正睿OI DAY3 杂题选讲

    正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...