什么是图像分割
图像分割(Image Segmentation)是图像处理最重要的处理手段之一
图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans 距离变换常见算法有两种
- 不断膨胀/腐蚀得到
- 基于倒角距离 分水岭变换常见的算法
- 基于浸泡理论实现
cv::distanceTransform(
InputArray src,
OutputArray dst,
OutputArray labels, //离散维诺图输出
int distanceType, // DIST_L1/DIST_L2,
int maskSize, // 3x3,最新的支持5x5,推荐3x3、
int labelType=DIST_LABEL_CCOMP //dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致
) cv::watershed(
InputArray image,
InputOutputArray markers
)
处理流程
. 将白色背景变成黑色-目的是为后面的变换做准备
. 使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
. 转为二值图像通过threshold
. 距离变换
. 对距离变换结果进行归一化到[~]之间
. 使用阈值,再次二值化,得到标记
. 腐蚀得到每个Peak - erode
. 发现轮廓 – findContours
. 绘制轮廓- drawContours
. 分水岭变换 watershed
. 对每个分割区域着色输出结果
int main(int argc, char** argv) {
char input_win[] = "input image";
char watershed_win[] = "watershed segmentation demo";
Mat src = imread(STRPAHT2);
if (src.empty()) {
printf("could not load image...\n");
return -;
}
namedWindow(input_win, CV_WINDOW_AUTOSIZE);
imshow(input_win, src); // 将白色背景变成黑色-为后面的变换做准备
for (int row = ; row < src.rows; row++) {
for (int col = ; col < src.cols; col++) {
if (src.at<Vec3b>(row, col) == Vec3b(, , )) {
src.at<Vec3b>(row, col)[] = ;
src.at<Vec3b>(row, col)[] = ;
src.at<Vec3b>(row, col)[] = ;
}
}
}
//namedWindow("black background", CV_WINDOW_AUTOSIZE);
//imshow("black background", src); // sharpen
Mat kernel = (Mat_<float>(, ) << , , , , -, , , , );
Mat imgLaplance;
Mat sharpenImg = src;
//使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
filter2D(src, imgLaplance, CV_32F, kernel, Point(-, -), , BORDER_DEFAULT);
src.convertTo(sharpenImg, CV_32F);
Mat resultImg = sharpenImg - imgLaplance; resultImg.convertTo(resultImg, CV_8UC3);
imgLaplance.convertTo(imgLaplance, CV_8UC3);
imshow("sharpen image", resultImg); // convert to binary
Mat binaryImg;
cvtColor(src, resultImg, CV_BGR2GRAY);
// 转为二值图像通过threshold
threshold(resultImg, binaryImg, , , THRESH_BINARY | THRESH_OTSU);
imshow("binary image", binaryImg); Mat distImg;
// 每一个非零点距离离自己最近的零点的距离
distanceTransform(binaryImg, distImg, DIST_L1, CV_DIST_C, ); // 归一化
normalize(distImg, distImg, , , NORM_MINMAX);
imshow("distance result", distImg); // 使用阈值,再次二值化,得到标记
threshold(distImg, distImg, ., , THRESH_BINARY);
Mat k1 = Mat::ones(, , CV_8UC1);
// 膨胀/腐蚀
erode(distImg, distImg, k1, Point(-, -));
imshow("distance binary image", distImg); // markers
Mat dist_8u;
distImg.convertTo(dist_8u, CV_8U);
vector<vector<Point>> contours;
// 发现轮廓
findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(, )); // 绘制轮廓
Mat markers = Mat::zeros(src.size(), CV_32SC1);
for (size_t i = ; i < contours.size(); i++) {
drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + ), -);
}
circle(markers, Point(, ), , Scalar(, , ), -);
imshow("my markers", markers * ); // 分水岭变换
watershed(src, markers);
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark, Mat());
imshow("watershed image", mark); // 对每个分割区域着色输出结果
vector<Vec3b> colors;
for (size_t i = ; i < contours.size(); i++) {
int r = theRNG().uniform(, );
int g = theRNG().uniform(, );
int b = theRNG().uniform(, );
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
} Mat dst = Mat::zeros(markers.size(), CV_8UC3);
for (int row = ; row < markers.rows; row++) {
for (int col = ; col < markers.cols; col++) {
int index = markers.at<int>(row, col);
if (index > && index <= static_cast<int>(contours.size())) {
dst.at<Vec3b>(row, col) = colors[index - ];
}
else {
dst.at<Vec3b>(row, col) = Vec3b(, , );
}
}
}
imshow("Final Result", dst); waitKey();
return ;
}

opencv::基于距离变换与分水岭的图像分割的更多相关文章

  1. Blob分析--粘连颗粒检测 基于距离变换的分水岭区域分割 盆地与原连通域求交集

    文章转自微信公众号:机器视觉那些事 *******************************************************************公众号:机器视觉那些事儿*** ...

  2. OpenCV——距离变换与分水岭算法的(图像分割)

    C++: void distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize) 参数详解: I ...

  3. [ZZ] 基于Matlab的标记分水岭分割算法

    基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching obj ...

  4. 基于Matlab的标记分水岭分割算法

    转自:http://blog.sina.com.cn/lyqmath 1 综述 Separating touching objects in an image is one of the more d ...

  5. Opencv距离变换distanceTransform应用——细化字符轮廓&&查找物体质心

    Opencv中distanceTransform方法用于计算图像中每一个非零点距离离自己最近的零点的距离,distanceTransform的第二个Mat矩阵参数dst保存了每一个点与最近的零点的距离 ...

  6. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  7. 距离变换DT

    距离变换:计算区域中的每个点与最接近的区域外的点之间距离,把二值图象变换为灰度图象. 对于目标中一个点,距离变换的定义为改点与目标边界最近的距离. 目标点离边界约近则值越小,转换的点越暗:越远,值越大 ...

  8. SSE图像算法优化系列二十一:基于DCT变换图像去噪算法的进一步优化(100W像素30ms)。

    在优化IPOL网站中基于DCT(离散余弦变换)的图像去噪算法(附源代码) 一文中,我们曾经优化过基于DCT变换的图像去噪算法,在那文所提供的Demo中,处理一副1000*1000左右的灰度噪音图像耗时 ...

  9. Win8Metro(C#)数字图像处理--2.25二值图像距离变换

    原文:Win8Metro(C#)数字图像处理--2.25二值图像距离变换  [函数名称] 二值图像距离变换函数DistanceTransformProcess(WriteableBitmap sr ...

随机推荐

  1. python安装第三方包的安装路径, dist-packages和site-packages区别

    简单来说 如果是系统自带的python,会使用dist-packages目录 如果你手动安装python,它会直接使用目录site-packages 这允许你让两个安装隔离开来 dist-packag ...

  2. 词义消除歧义NLP项目实验

    词义消除歧义NLP项目实验 本项目主要使用https://github.com/alvations/pywsd 中的pywsd库来实现词义消除歧义 目前,该库一部分已经移植到了nltk中,为了获得更好 ...

  3. java数据结构——栈(Stack)

    学习数据结构与算法是枯燥的,但只有坚持不懈的积累,才会有硕果累累的明天. /** * 继续学习Java数据结构 ————栈 * 栈的实现其实还是使用数组,只不过我们不能直接访问数组下标,而是通过一个指 ...

  4. Spring Boot2 系列教程(九)Spring Boot 整合 Thymeleaf

    虽然现在慢慢在流行前后端分离开发,但是据松哥所了解到的,还是有一些公司在做前后端不分的开发,而在前后端不分的开发中,我们就会需要后端页面模板(实际上,即使前后端分离,也会在一些场景下需要使用页面模板, ...

  5. Maven 梳理 -多模块 vs 继承

    Maven提高篇系列之(一)——多模块 vs 继承   这是一个Maven提高篇的系列,包含有以下文章: Maven提高篇系列之(一)——多模块 vs 继承 Maven提高篇系列之(二)——配置Plu ...

  6. 免费下载 80多种的微软推出入门级 .NET视频

    .NET Core 3.0发布视频系列中宣布了80多个新的免费视频,这些视频同时放在Microsoft的Channel 9 和youtube上面. 在线观看由于跨洋网络效果不太好,下载到机器上慢慢上是 ...

  7. Ajax async属性

    async: 默认是true:异步,false:同步. 其他属性扩展: 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为String类型的参数, ...

  8. Angular 常用命令行

    1. ng -v 查看angular-cli是否安装成功.angular-cli的版本号 2. ng new 项目名称 新建angular项目 3. ng g class 类名 动态生成类文件: 4. ...

  9. Redis分布式锁的一点小理解

    1.在分布式系统中,我们使用锁机制只能保证同一个JVM中一次只有一个线程访问,但是在分布式的系统中锁就不起作用了,这时候就要用到分布式锁(有多种,这里指 redis) 2.在 redis当中可以使用命 ...

  10. 品Spring:真没想到,三十步才能完成一个bean实例的创建

    在容器启动快完成时,会把所有的单例bean进行实例化,也可以叫做预先实例化. 这样做的好处之一是,可以及早地发现问题,及早的抛出异常,及早地解决掉. 本文就来看下整个的实例化过程.其实还是比较繁琐的. ...