python--几种快速排序的实现以及运行时间比较
快速排序的基本思想:首先选定一个数组中的一个初始值,将数组中比该值小的放在左边,比该值大的放在右边,然后分别对左边的数组进行如上的操作,对右边的数组进行如上的操作。(分治+递归)
1.利用匿名函数lambda
匿名函数的基本用法func_name = lambda x:array,冒号左边的x代表传入的参数,冒号右边的array代表返回值,当然名字是可以自己取的。
quick_sort = lambda array: \
array if len(array) <= 1 \
else quick_sort([item for item in array[1:] if item <= array[0]]) \
+ [array[0]] + \
quick_sort([item for item in array[1:] if item > array[0]])
2.将匿名函数拆解封装为函数
def func2(array):
if len(array)<=1:
return array
tmp = array[0]
left = [x for x in array[1:] if x<=tmp]
right = [x for x in array[1:] if x>tmp]
return func2(left) + [tmp] + func2(right)
3.网上常见的
def func2(array,left,right):
if left>=right:
return
low=left
high=right
tmp=array[low]
while left<right:
while left<right and array[right]>tmp:
right-=1
array[left] = array[right]
while left<right and array[left]<=tmp:
left+=1
array[right]=array[left]
array[right]=tmp
func2(array,low,left-1)
func2(array,left+1,high)
4.算法导论里面的
def func3(array, l, r):
if l < r:
q = partition(array, l, r)
func3(array, l, q - 1)
func3(array, q + 1, r) def partition(array, l, r):
x = array[r]
i = l - 1
for j in range(l, r):
if array[j] <= x:
i += 1
array[i], array[j] = array[j], array[i]
array[i + 1], array[r] = array[r], array[i + 1]
return i + 1
5.利用栈实现非递归版本
def func4(array, l, r):
if l >= r:
return
stack = []
stack.append(l)
stack.append(r)
while stack:
low = stack.pop(0)
high = stack.pop(0)
if high - low <= 0:
continue
x = array[high]
i = low - 1
for j in range(low, high):
if array[j] <= x:
i += 1
array[i], array[j] = array[j], array[i]
array[i + 1], array[high] = array[high], array[i + 1]
stack.extend([low, i, i + 2, high])
6.python内置的
sorted(array)
本来是想利用装饰器来测一下每个函数的运行时间的,但是由于快排里面存在递归,使用装饰器会报错,就只好一个个计算了。这里还是贴一下用装饰器计算时间的代码:
def count_time(func):
@wraps(func)
def helper(func,*args,**kwargs):
start=time()
result = func(*args,**kwargs)
end=time()
print("函数:", func.__name__, "运行时间:", round(end - start, 4), "s")
return result
return helper
这里我们的输入是随机生成的在0-100间的整数,我们测试一下在不同数量下的消耗时间:
from functools import wraps
from random import randint
from time import time func1_start =time()
res = quick_sort(array)
func1_end =time()
print("函数:func1 运行时间:", round(func1_end - func1_start, 4), "s") func2_start =time()
func2(array)
func2_end =time()
print("函数:func2 运行时间:", round(func2_end - func2_start, 4), "s") func3_start =time()
func3(array,0,len(array)-1)
func3_end =time()
print("函数:func3 运行时间:", round(func3_end - func3_start, 4), "s") func4_start =time()
func4(array,0,len(array)-1)
func4_end =time()
print("函数:func4 运行时间:", round(func4_end - func4_start, 4), "s") func5_start =time()
func5(array,0,len(array)-1)
func5_end =time()
print("函数:func5 运行时间:", round(func5_end - func5_start, 4), "s") func6_start =time()
sorted(array)
func6_end =time()
print("函数:func6 运行时间:", round(func6_end - func6_start, 4), "s")
输入array的定义:
array = [randint(0,100) for i in range(5000)]
需要注意的是,随着数据量的增加,方法4,也就是算法导论中的会出现以下问题:
这是因为python中的递归深度是有一定限制的,可以使用如下方法暂时解决该问题:
import sys
sys.setrecursionlimit(100000)
同时,方法4还会出现内存溢出问题,方法4也太坑了。
最后对比一下这些方法消耗的时间:
总结:
- 方法一、方法二速度较快,同时也较好理解,想要学会快速排序,只要记住方法二即可;
- python内置的排序速度还是最快的呀;
python--几种快速排序的实现以及运行时间比较的更多相关文章
- php四种基础排序算法的运行时间比较
/** * php四种基础排序算法的运行时间比较 * @authors Jesse (jesse152@163.com) * @date 2016-08-11 07:12:14 */ //冒泡排序法 ...
- Python几种并发实现方案的性能比较
http://blog.csdn.net/permike/article/details/54846831 Python几种并发实现方案的性能比较 2017-02-03 14:33 1541人阅读 评 ...
- php四种基础排序算法的运行时间比较!
/** * php四种基础排序算法的运行时间比较 * @authors Jesse (jesse152@163.com) * @date 2016-08-11 07:12:14 */ //冒泡排序法 ...
- python三大web框架Django,Flask,Flask,Python几种主流框架,13个Python web框架比较,2018年Python web五大主流框架
Python几种主流框架 从GitHub中整理出的15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. Django: Python We ...
- python 四种数值类型(int,long,float,complex)介绍
Python支持四种不同的数值类型,包括int(整数)long(长整数)float(浮点实际值)complex (复数),本文章向码农介绍python 四种数值类型,需要的朋友可以参考一下. 数字数据 ...
- 【转】python 三种遍历list的方法
[转]python 三种遍历list的方法 #!/usr/bin/env python # -*- coding: utf-8 -*- if __name__ == '__main__': list ...
- Python与Go快速排序
#!/usr/bin/env python # -*- coding: utf-8 -*- # 快速排序 # 时间复杂度 O(n lgn)-- O(n^2) def quick_sort(array) ...
- Java程序员的现代RPC指南(Windows版预编译好的Protoc支持C++,Java,Python三种最常用的语言,Thrift则支持几乎主流的各种语言)
Java程序员的现代RPC指南 1.前言 1.1 RPC框架简介 最早接触RPC还是初学Java时,直接用Socket API传东西好麻烦.于是发现了JDK直接支持的RMI,然后就用得不亦乐乎,各种大 ...
- 《手把手教你》系列进阶篇之3-python+ selenium自动化测试 - python几种骚操作你都知道吗?(详细教程)
1. 简介 这篇文章主要是给小伙伴或者童鞋们介绍和分享 python几种骚操:读取配置文件.获取根目录的相对路径.获取系统时间和格式化时间显示.字符串切割等等操作.为后边的自动化框架打下一个结实的基础 ...
随机推荐
- kafka JavaAPI遇到的坑
症状:Producer连不上,提示没有可用Node. 解决:在安装kafka的目录中配置server.properties 1.listeners=PLAINTEXT://:9092或listener ...
- Halcon一日一练:阈值分割的几个算子
threshold(Image:Region:MinGray:MaxGray:) 功能:得到灰度值在最小与最大这间的那些部分.其返回仍然是一个区域. MinGray<MaxGray. 这个算子可 ...
- 详解Java Web项目启动执行顺序
一. web.xml加载过程(步骤): 启动web项目,容器(如Tomcat.Apache)会去读取它的配置文件web.xml 中的两个节点,context-param和listener. 紧接着,容 ...
- Python标准库---random模块的使用
更新时间:2019.09.12(更新目录) 目录 1. 谈谈随机数 2. random模块 2.1 random.seed() 2.2 random.random() 2.3 random ...
- Java初学者的学习路线推荐
Java学习这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是你是如何学习Java的,能不能给点建议?今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈每 ...
- InitializingBean,spring 初始化bean
springframework的提供接口,InitializingBean接口为bean提供了初始化方法的方式,它只包括afterPropertiesSet方法,凡是继承该接口的类,在初始化bean的 ...
- django-Views之类视图 (六)
book/urls.py from django.urls import path from . import views urlpatterns = [ path('',views.IndexVie ...
- Solr入门(一)
一丶Solr入门1.Solr的启动Solr各版本下载老版本的时候,需要将war包放到tomcat中,现在只需解压,由于自带jetty容器,可以直接启动 [root@aaa bin]# ./solr s ...
- ERP 到底是什么? 一则故事搞懂ERP
你知道什么是ERP? ERP是什么? 你知道什么是ERP吗? (通俗易懂版) 一个故事搞懂“ERP” 一天中午,丈夫在外给家里打电话:“亲爱的老婆,晚上我想带几个同事回家吃饭可以吗?”(订货意向) 妻 ...
- 爬虫基本库的使用---requests库
使用requests---实现Cookies.登录验证.代理设置等操作 处理网页验证和Cookies时,需要写Opener和Handler来处理,为了更方便地实现这些操作,就有了更强大的库reques ...