1.1将数据分解为单独的变量
list_a = [1,2,3,4,5,6,7,8,9]
a,b,c,d,e,f,g,h,i = list_a
print(a,b,c,d,e,f,g,h,i)
#使用相等数量的参数来接收 _,b,c,d,e,f,g,h,_ = list_a
print(b,c,d,e,f,g,h)
#不要的数据使用一个没有用的变量接收
1.2从任意长度的可迭代对象中分解元素

使用 * XXX实现

list_a = range(20)
first,*middle,last = list_a
print(first,middle,last)
#使用*来接收任意数量,甚至没有,返回一个list #当一个元祖内有一个标志位时,一个较好的应用
records = [
("foo",1,2),
("bar","hello"),
("foo",3,4)
] def do_foo(x,y):
print("foo",x,y) def do_bar(s):
print("bar",s) for tags,*args in records:
if tags == "foo":
do_foo(*args)
elif tags == "bar":
do_bar(*args)
1.3保存最后N个元素

collections.deque()

import collections

#使用collections.deque(maxlen=5)来定义一个固定长度的list,有新数据写入时如果已经达到maxlen,会自动删除最早插入的数据
def search(lines,pattern,history = 5):
previous_lines = collections.deque(maxlen=history)
for line in lines:
if pattern in line:
yield line,previous_lines
previous_lines.append(line) if __name__ =="__main__":
with open("test.txt","r",encoding="utf8") as f:
for line,previous in search(f,"python",5):
for pline in previous:
print(pline,end="")
print(line,end="")
print("-"*20) #collections.deque使用简介
#一个更加强大的list queue = collections.deque(["jiao","li",'hao',"yu"])
queue.appendleft("wu")
print(queue)
queue.append("haha")
print(queue)
queue.popleft()
print(queue)
print(queue[4])

1.4找到最大或最小的N个元素

heapq.nlargest(),heapq.nsmallest()

import heapq

nums = [5,56,7,6,34,2,5,7,6,89,80,-90,0,9,-67,5,45,]

print(min(nums))
print(max(nums)) print(heapq.nlargest(3,nums))
print(heapq.nsmallest(3,nums)) #可支持更加复杂的数据结构 portfolio = [
{"name":"jiao","age":24},
{"name":"jsdfo","age":2},
{"name":"jisd","age":12},
{"name":"jdo","age":36},
{"name":"li","age":25},
{"name":"jgd","age":50},
] print(heapq.nlargest(3,portfolio,key=lambda s:s['age']))
print(max(portfolio,key=lambda s:s['age']))
1.5实现优先级队列

heapq.heappush(),heapq.heappop()

import heapq

#列表中实际存一个元组,(-priority,self._index,item)
class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0 def push(self,item,priority):
heapq.heappush(self._queue,(-priority,self._index,item))
self._index += 1 def pop(self):
return heapq.heappop(self._queue)[-1] def get(self):
return self._queue q = PriorityQueue()
q.push("foo",2)
q.push("sdf",3)
q.push("sfasc",5)
q.push("fdsg",4)
print(q.pop())
print(q.get())
 
1.6在字典中将键映射到多个值上

collections.defaultdict(list),collections.defaultdict(set)

import collections

d = collections.defaultdict(list)#自动初始化,不用判断是否存在
d["a"].append(1)
d["a"].append(1)
d["a"].append(1)
d["a"].append(1)
print(d['a'])
1.7让字典保持有序

collections.OrderedDict()

import collections

d = collections.OrderedDict()#普通字典的两倍,大数据不应该使用
d['foo'] = 1
d["bar"] = 2
d["spam"] = 3
d["gork"] = 4
for i in d:
print(i)
1.8与字典有关的计算问题

zip(),min(),sorted().max()

#字典进行大小运算时都是使用key值进行大小比较,而我们一般想要用value值比较,而且还想要得到该值的key

prices = {
"ACME":23,
"AAPL":345,
"IBM":34,
"FB":24
} #利用zip,zip返回一个迭代器,只能使用一次 min_price = min(zip(prices.values(),prices.keys()))
print(min_price) #排序
price_sorted = sorted(zip(prices.values(),prices.keys()))
print(price_sorted)
 
1.9在两个字典中寻找相同点
a = {
"x":2,
"y":5,
"z":7
} b = {
"x":2,
"y":8,
"w":4
} print(a.keys() & b.keys())#寻找相同的key
print(a.keys() - b.keys())#寻找a中有b中没有的key
print(a.items() & b.items())#寻找相同项
1.10从序列中移除重复项且保持元素间顺序不变
def dedupe(items,key = None):
seen = set()
for item in items:
val = item if key is None else key(item)
if val not in seen:
yield item
seen.add(val)

cookbook_数据结构和算法的更多相关文章

  1. 开启基本数据结构和算法之路--初识Graphviz

    在我的Linux刀耕开荒阶段,就想开始重拾C,利用C实现常用的基本数据结构和算法,而数据结构和算法的掌握的熟练程度正是程序的初学者与职业程序员的分水岭. 那么怎么开启这一段历程呢? 按照软件工程的思想 ...

  2. 【转】MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  3. [转]MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  4. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  5. 数据结构与算法JavaScript (一) 栈

    序 数据结构与算法JavaScript这本书算是讲解得比较浅显的,优点就是用javascript语言把常用的数据结构给描述了下,书中很多例子来源于常见的一些面试题目,算是与时俱进,业余看了下就顺便记录 ...

  6. 数据结构与算法 Big O 备忘录与现实

    不论今天的计算机技术变化,新技术的出现,所有都是来自数据结构与算法基础.我们需要温故而知新.        算法.架构.策略.机器学习之间的关系.在过往和技术人员交流时,很多人对算法和架构之间的关系感 ...

  7. 《java数据结构和算法》读书笔记

    大学时并不是读计算机专业的, 之前并没有看过数据结构和算法,这是我第一次看.         从数据结构方面来说:                数组:最简单,遍历.查找很快:但是大小固定,不利于扩展 ...

  8. MySQL索引背后的数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  9. javascript数据结构与算法--高级排序算法

    javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...

随机推荐

  1. 一次项目代码重构-使用spring容器干掉条件判断

    一次项目代码重构-使用spring容器干掉条件判断 这是在一次公司项目中进行重构时,一些复杂业务时想到的一个去掉一些if else的办法.能够使代码逻辑更加清晰,减少一些业务上的耦合. 业务说明 我所 ...

  2. Dubbo详解-说明(一)

    Dubbo 是什么? Dubble是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理的方案. Dubbo 有啥特点? 远程通讯:提供透明化的远程方法的调用,提供 ...

  3. Zookeeper详解-工作流和leader选举(三)

    一.工作流 一旦ZooKeeper集合启动,它将等待客户端连接.客户端将连接到ZooKeeper集合中的一个节点.它可以是leader或follower节点.一旦客户端被连接,节点将向特定客户端分配会 ...

  4. jQuery入门——实现列表的显示隐藏与实现轮播图

    列表的显示与隐藏 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head& ...

  5. Python生成word

    Python生成word 使用python-docx-template库, 将html转为word. python-docx-template可以使用类似jinja2的模板语法. 依赖docx库, 安 ...

  6. Python开发【第五篇】: 内置模块

    内容概要 二分查找.冒泡 random time os sys pickle json shelve re 1.二分查找和冒泡排序 01. 二分查找 二分查找也称折半查找(Binary Search) ...

  7. 02_javaSE面试题:单例设计模式

    还记得很多年前,面试就让在白板上写个单例模式,当时技术渣渣,还写的是class A.面试官还说,你就不能写个Singleton. 面试题 编程题:写一个Singleton示例 解析 什么是Single ...

  8. python的比较关系运算符和逻辑运算符

    比较运算符 运算符 描述 示例 == 检查两个操作数的值是否相等,如果是则条件变为真. 如a=2,b=2则(a == b) 为 true. != 检查两个操作数的值是否相等,如果值不相等,则条件变为真 ...

  9. Android使用Camera2获取预览数据

    一.Camera2简介 Camera2是Google在Android 5.0后推出的一个全新的相机API,Camera2和Camera没有继承关系,是完全重新设计的,且Camera2支持的功能也更加丰 ...

  10. 一套简单的web即时通讯——第一版

    前言 我们之前已经实现了 WebSocket+Java 私聊.群聊实例,后面我们模仿layer弹窗,封装了一个自己的web弹窗 自定义web弹窗/层:简易风格的msg与可拖放的dialog,生成博客园 ...