问题描述

BZOJ2591

LG3047


题解

换根树形DP。

设 \(opt[i][j]\) 代表 当 \(1\) 为根时,\(i\) 为根的子树中,到 \(i\) 的距离为 \(j\) 的权值和

此时我们就可以得到 \(1\) 号结点的答案。

考虑这样做 \(n\) 遍,可以求出答案,但是会T飞掉。

观察每次暴力DP,发现大部分结点的信息还是相同的,这是优化复杂度的关键所在。

考虑换根。

从 \(x\) 号结点转移到 \(y\) 号节点上,发现只有 \(x,y\) 两个结点的信息被改变了。

换根后

只要将 \(y\) 结点距离 \(p\) 加上 \(x\) 结点距离 \(p-1\) 的信息就行了。

但是发现 \(x\) 号结点距离 \(p-1\) 的信息中,还包含 \(y\) 号结点 \(p-2\) 的信息,所以要倒序枚举 \(p\) ,去重。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} const int maxn=100007;
const int maxm=200007; int n,k;
int Head[maxn],to[maxm],Next[maxm],tot;
int c[maxn]; void add(int x,int y){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot;
} int opt[maxn][21]; void dp(int x,int f){
opt[x][0]=c[x];
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(y==f) continue;
dp(y,x);
for(int j=1;j<=k;j++){
opt[x][j]+=opt[y][j-1];
}
}
} int ans[maxn]; void calc(int x,int y){
for(int i=k;i>=2;i--) opt[y][i]+=opt[x][i-1]-opt[y][i-2];
opt[y][1]+=opt[x][0];
} void zy(int x,int f){
for(int i=0;i<=k;i++) ans[x]+=opt[x][i];
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(y==f) continue;
calc(x,y);zy(y,x);
}
} int main(){
read(n);read(k);
for(int i=1,x,y;i<n;i++){
read(x);read(y);
add(x,y);add(y,x);
}
for(int i=1;i<=n;i++) read(c[i]);
dp(1,0);zy(1,0);
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
return 0;
}

BZOJ2591/LG3047 「USACO12FEB」Nearby Cows 换根树形DP的更多相关文章

  1. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  2. POJ3585:Accumulation Degree(换根树形dp)

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3425   Accepted: 85 ...

  3. [BZOJ3566][SHOI2014]概率充电器 换根树形DP

    链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...

  4. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  5. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  6. 51nod1812树的双直径(换根树DP)

    传送门:http://www.51nod.com/Challenge/Problem.html#!#problemId=1812 题解:头一次写换根树DP. 求两条不相交的直径乘积最大,所以可以这样考 ...

  7. 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  8. 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序

    [题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...

  9. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

随机推荐

  1. nginx将http升级到https并且同时支持http和https两种请求、http自动转向https

    1.http升级到https 1.1.检查 Nginx 是否支持 SSL /usr/local/nginx/sbin/nginx -V configure arguments中是否有--with-ht ...

  2. CocoaPods安装和使用201712

    CocoaPods安装使用详解 2017.12 首先,很有必要了解一下CocoaPods.Ruby和RubyGems,以及它们之间的关系. CocoaPods是第三方库的辅助管理工具,依赖于Ruby. ...

  3. 云K8S - AWS容器库ECR(ERS)编排ECS-EKS以及阿里云编排ACS-ACK

    云K8S相关 AWS 部分-ECR(ERS) ECS EKS 20180824 Chenxin AWS的容器编排目前分为 ECS 和 EKS 两种. AWS价格说明 Fargate模式的ECS,换算成 ...

  4. December 07th, Week 49th Saturday, 2019

    Snowflakes are pretty patterns etched in water's dreams. 雪花,是水在梦中镌刻的美丽图案. From Anthony T.Hincks. Tod ...

  5. C# 执行 cmd 命令, 不显示任何窗口

    代码如下: 调用的命令:reg export exportPath registryKey -y Process proc = new Process(); proc.StartInfo.FileNa ...

  6. 【洛谷5794】[THUSC2015] 解密运算(模拟)

    点此看题面 大致题意: 对于一个字符串,我们在其末尾添加一个'.',将字符串视作一个环,则可以从\(n+1\)个位置断开得到\(n+1\)个新串.现将这\(n+1\)个新串按字典序排序('.'的字典序 ...

  7. Mac-无法进入mysql,你这样做就对了

    mysql -uroot -p 输入密码之后报错:ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using passwo ...

  8. JeeSite | 保存信息修改记录封装

    前面写过两篇关于“保存信息修改记录”的内容,分别如下: JeeSite | 保存信息修改记录 JeeSite | 保存信息修改记录续 回顾         第一篇文章通过类字段的比较返回一个有字段值不 ...

  9. FLV提取AAC音频单独播放并实现可视化的频谱

    如上图,要实现对FLV直播流中音频的识别,并展示成一个音频相关的动态频谱. 一. 首先了解下什么是声音? 能量波,有频率有振幅,频率高低就是音调,振幅大小就是音量:采样率是对频率采样,采样精度是对幅度 ...

  10. sql server判断表存在

    在创建表.更改表结构.删除表或对表进行什么操作之前,一个比较严谨的做法是先判断该表是否已经存在. 在SQL Server中判断一个表是否存在,有两个方法,下面以diso表为例. 方法1 from sy ...