luogu P3830 [SHOI2012]随机树
输入格式
输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数。
输出格式
输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位。如果 q = 1,则 d 表示叶结点平均深度的数学期望值;如果 q = 2,则 d 表示树深度的数学期望值。
p=1
令f(x)表示有x个叶子节点的树的叶子节点平均深度,则
f(x)*x 为叶子节点深度之和
f(x)+2随机选择一个叶子节点展开后增加的深度
f(x)= ((x-1)f(x-1)+f(x-1)+2)/x = (xf(x) +2)/x = f(x) + 2/x
p=2:
设f[i][j]表示当一颗树有i个叶子节点,且深度大于等于j时的概率; 设p[i][j]表示当一颗树有i个叶子节点,且深度等于jj时的概率;
则有f[i][j]=p[i][j]+p[i][j+1]+⋯+p[i][n−1]
f[n][1]=\(\sum_{i=1}^{n-1}\)p[n][i]
f[n][2]=\(\sum_{i=2}^{n-1}\)p[n][i]
f[n][3]=\(\sum_{i=3}^{n-1}\)p[n][i]
.
.
.
f[n][n-1]=p[n][n-1]
\(\sum_{i=1}^{n-1}\)f[n][i]=\(\sum_{i=1}^{n-1}\)p[n][i]*i
\(\sum_{i=1}^{n-1}\)f[n][i] 即为所求
#include<cstdio>
#include<iostream>
using namespace std;
#define int long long
#define db double
int p,n;
db f[110],dp[110][110],ans;
inline void work(){
for(int i=1;i<=n;i++)dp[i][0]=1;
for(int i=2;i<=n;i++)
for(int j=1;j<i;j++){
for(int k=1;k<i;k++)
dp[i][j]+=dp[k][j-1]+dp[i-k][j-1]-dp[k][j-1]*dp[i-k][j-1];
dp[i][j]/=(i-1);
}
for(int i=1;i<n;i++)ans+=dp[n][i];
printf("%.6f\n",ans);
}
signed main(){
cin>>p>>n;
if(p==1){
f[1]=0;for(int i=2;i<=n;i++)f[i]=f[i-1]+2.0/i;
printf("%.6f\n",f[n]);
}else work();
}
luogu P3830 [SHOI2012]随机树的更多相关文章
- luogu P3830 [SHOI2012]随机树 期望 dp
LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...
- P3830 [SHOI2012]随机树 题解
P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...
- P3830 [SHOI2012]随机树
P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...
- 洛谷 P3830 [SHOI2012]随机树
https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...
- 洛谷P3830 [SHOI2012]随机树——概率期望
题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...
- 洛谷P3830 [SHOI2012]随机树(期望dp)
题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...
- [SHOI2012]随机树
[SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...
- bzoj2830: [Shoi2012]随机树
题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...
- BZOJ2830 & 洛谷3830:[SHOI2012]随机树——题解
https://www.luogu.org/problemnew/show/P3830#sub <-题面看这里~ https://www.lydsy.com/JudgeOnline/prob ...
随机推荐
- 02-model设计
一.项目依赖包安装 1.安装Django(2.2.7) pip3 install django 2.安装DjangoRestFramework 因为DjangoRestFramework是基于Djan ...
- STM32中断系统
1.中断介绍: 1.1 中断概念 CPU执行程序时,由于发生了某种随机的事件(外部或内部),引起CPU暂 时中断正在运行的程序,转去执行一段特殊的服务程序(中断服务子程序 或中断处理程 ...
- 使用 vue-element-admin 动态路由渲染
附上:vue-element-admin 官方文档 vue-element-admin https://panjiachen.github.io/vue-element-admin-site/zh/g ...
- Python 基础 面向对象之二 三大特性
Python 基础 面向对象之二 三大特性 上一篇主要介绍了Python中,面向对象的类和对象的定义及实例的简单应用,本篇继续接着上篇来谈,在这一篇中我们重点要谈及的内容有:Python 类的成员.成 ...
- 基于docker实现redis高可用集群
基于docker实现redis高可用集群 yls 2019-9-20 简介 基于docker和docker-compose 使用redis集群和sentinel集群,达到redis高可用,为缓存做铺垫 ...
- 点击a标签的时候出现虚影
在a标签中添加 outline:none;就可以去除了
- QQ是怎样创造出来的?——解密好友系统的设计
本篇介绍笔者接触的第一个后台系统,从自身见闻出发,因此涉及的内容相对比较基础,后台大牛请自觉略过. 什么是好友系统? 简单的说,好友系统是维护用户好友关系的系统.我们最熟悉的好友系统案例当属QQ,实际 ...
- requests模拟登陆的三种方式
###获取登录后的页面三种方式: 一.实例化seesion,使用seesion发送post请求,在使用他获取登陆后的页面 import requests session = requests.sess ...
- shuf
shi一个排序器,一般用来试用随机输入产生随机乱序的输出,他可以作用于输入文件或者数值范围,也可以对数组进行操作. -i -nN -e 1.掷骰子shuf -i 1-6 -n1 shuf -i 1-6 ...
- bash:加减乘除(bc、let)
bc *. echo "$2 * $2" | bc > file let 如果只是 let a=1 和 a=1,它们没有区别,但是 let 还可以用于带赋值的运算,例如 le ...