假设有如下一张图,如何把其中的文本分块切割出来,比如“华普超市朝阳门店”、“2015-07-26”就是两个文本块。

做图像切割有很多种方法,本文描述一种最直观的投影检测法。先来看看什么是投影,简单来说,投影就是在一定方向上有效像素的数量。来看个直观的图像:

这是一张水平投影图与原图的对比,从投影图上能看到多个波峰,文字多的地方,投影就长,行间的空白处,投影为0。 上个示例代码:

public void HorizontalProjection()
{
//以灰度图方式读入源文件
string filename = "source.jpg";
var src = IplImage.FromFile(filename, LoadMode.GrayScale); //二值化,采用阈值分割法
Cv.Threshold(src, src, , , ThresholdType.BinaryInv | ThresholdType.Otsu); //存储投影值的数组
var h = new int[src.Height]; //对每一行计算投影值
for(int y = ;y < src.Height;++y)
{
//遍历这一行的每一个像素,如果是有效的,累加投影值
for(int x = ;x < src.Width;++x)
{
var s = Cv.Get2D(src, y, x);
if(s.Val0 == )
h[y]++;
}
} //准备一个图像用于画投影图
var paintY = Cv.CreateImage(src.Size, BitDepth.U8, );
Cv.Zero(paintY); //画图
var t = new CvScalar();
for(int y = ;y < src.Height;++y)
{
for(int x = ;x < h[y];++x)
Cv.Set2D(paintY, y, x, t);
} //显示
using(var window = new CvWindow("Source"))
{
window.Image = src;
using(var win2 = new CvWindow("Projection"))
{
win2.Image = paintY;
Cv.WaitKey();
}
}
}

显然找出波峰对应的y值,就能把行切割开了。 得到一行以后,可以采用类似的思想进行垂直投影,挑了一行测试一下,效果如下:

可以看到效果不是特别好,左右结构的汉字有可能被切开,一个完整的数值也有可能分成多个数字,这种情况需要做一下处理,比如识别的时候要判断如果间距较小就认为仍是同一文本块,或者对图像进行一下横向膨胀处理:

var kernal = Cv.CreateStructuringElementEx(, , , , ElementShape.Rect);
Cv.Dilate(src, src, kernal, );

再计算投影,得到的效果就好多了:

最后上完整代码以及切割效果展示:

using System;
using System.Collections.Generic;
using System.IO;
using System.Text; using OpenCvSharp;
using OpenCvSharp.Extensions;
using OpenCvSharp.Utilities; namespace OpenCvTest
{
class Program
{
static void Main(string[] args)
{
//打开源文件
string filename = "source.jpg";
var src = IplImage.FromFile(filename); //转成灰度图
var gray = Cv.CreateImage(src.Size, BitDepth.U8, );
Cv.CvtColor(src, gray, ColorConversion.BgrToGray); //二值化,阈值分割算法
Cv.Threshold(gray, gray, , , ThresholdType.BinaryInv | ThresholdType.Otsu); //分行
var rows = GetRowRects(gray); //针对每一行再分块
var items = new List<CvRect>();
foreach (var row in rows)
{
var cols = GetBlockRects(gray.Clone(row), row.Y);
items.AddRange(cols);
} //把识别出的每一块画到原图上去
var color = new CvScalar(, , );
foreach (var rect in items)
{
Cv.DrawRect(src, rect, color, );
} //显示
using (var window = new CvWindow("Image"))
{
window.Image = src;
Cv.WaitKey();
}
} /// <summary>
/// 识别行
/// </summary>
/// <param name="source"></param>
/// <returns></returns>
private static List<CvRect> GetRowRects(IplImage source)
{
var rows = new List<CvRect>(); //用于存储投影值
var projection = new int[source.Height]; //遍历每一行计算投影值
for (int y = ; y < source.Height; ++y)
{
for (int x = ; x < source.Width; ++x)
{
var s = Cv.Get2D(source, y, x);
if (s.Val0 == )
projection[y]++;
}
} bool inLine = false;
int start = ; //开始根据投影值识别分割点
for (int i = ; i < projection.Length; ++i)
{
if (!inLine && projection[i] > )
{
//由空白进入字符区域了,记录标记
inLine = true;
start = i;
}
else if ((i - start > ) && projection[i] < && inLine)
{
//由字符区域进入空白区域了
inLine = false; //忽略高度太小的行,比如分隔线
if (i - start > )
{
//记录下位置
var rect = new CvRect(, start - , source.Width, i - start + );
rows.Add(rect);
}
}
} return rows;
} /// <summary>
/// 识别块
/// </summary>
/// <param name="source"></param>
/// <param name="rowY"></param>
/// <returns></returns>
private static List<CvRect> GetBlockRects(IplImage source, int rowY)
{
var blocks = new List<CvRect>(); //用于存储投影值
var projection = new int[source.Width]; //先进行横向膨胀
var kernal = Cv.CreateStructuringElementEx(, , , , ElementShape.Rect);
Cv.Dilate(source, source, kernal, ); //遍历每一列计算投影值
for (int x = ; x < source.Width; ++x)
{
for (int y = ; y < source.Height; ++y)
{
var s = Cv.Get2D(source, y, x);
if (s.Val0 == )
projection[x]++;
}
} bool inBlock = false;
int start = ; //开始根据投影值识别分割点
for (int i = ; i < projection.Length; ++i)
{
if (!inBlock && projection[i] >= )
{
//由空白区域进入字符区域了
inBlock = true;
start = i;
}
else if ((i - start > ) && inBlock && projection[i] < )
{
//由字符区域进入空白区域了
inBlock = false; //记录位置,注意由于传入的是source只是一行,因此最终的位置信息要+rowY
if(blocks.Count > )
{
//跟上一个比一下,如果距离过近,认为是同一个文本块,合并
var last = blocks[blocks.Count - ]; if (start - last.X - last.Width <= )
{
blocks.RemoveAt(blocks.Count - );
var rect = new CvRect(last.X, rowY, i - last.X, source.Height);
blocks.Add(rect);
}
else
{
var rect = new CvRect(start, rowY, i - start, source.Height);
blocks.Add(rect);
}
}
else
{
var rect = new CvRect(start, rowY, i - start, source.Height);
blocks.Add(rect);
} }
} return blocks;
}
}
}

得到的图像如下,效果还行,将来继续优化吧:

未经许可严禁转载。

基于OpenCV.Net投影法进行文本分块切割的更多相关文章

  1. Java基于opencv实现图像数字识别(五)—投影法分割字符

    Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...

  2. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  3. Java基于opencv实现图像数字识别(一)

    Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...

  4. 【Gabor】基于多尺度多方向Gabor融合+分块直方图的表情识别

    Topic:表情识别Env: win10 + Pycharm2018 + Python3.6.8Date:   2019/6/23~25 by hw_Chen2018                  ...

  5. [转载]卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...

  6. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  7. 基于OpenCv的人脸检测、识别系统学习制作笔记之一

    基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...

  8. 基于opencv网络摄像头在ubuntu下的视频获取

     基于opencv网络摄像头在ubuntu下的视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译运行步骤 安装编译opencv-2.3  参 ...

  9. 基于opencv的小波变换

    基于opencv的小波变换 提供函数DWT()和IDWT(),前者完成任意层次的小波变换,后者完成任意层次的小波逆变换.输入图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的 ...

随机推荐

  1. GO基础之变量的使用

    Go语言:是静态类型语言,因此变量(variable)是有明确类型的,编译器也会检查变量类型的正确性. 一.基本类型 变量的声明:全局变量必须有关键字var var name [type]  指定数据 ...

  2. PLSQL 12 安装、连接Oracle

    点击下载PLSQL,本次安装的PLSQL版本为12.0.7,建议安装64位. 下载PLSQL时,版本旁边会有个“Language pack”的链接,点击后左侧选择“Chinese”即可下载汉化包. 注 ...

  3. uni-app条件编译:#ifdef #ifndef #endif

    语法: // #ifdef %PLATFORM% 这些代码只在该平台编译 // #endif #ifdef :      if defined  仅在某个平台编译 #ifndef :     if n ...

  4. javascript json的使用

    转自:http://blog.csdn.net/lushuaiyin/article/details/7061483 对于js使用json,首先到官网拷贝json.js文件,地址http://www. ...

  5. 关于UIScollView中的contentOffset的理解

    大家对UIScollView 中的contentOffset 一直有疑问. 当时我也有好多疑问,后来在网上找了一下资料,发现没有找到合理的解释,因此自己就查看了一下官方文档,自己好好的研究了一番. 现 ...

  6. XCode证书问题

    1. 确认下证书是不是开发证书,如果是发布证书就会出现这样的提示. 2. 证书失效了,去开发者中心重新生成一个. 3. 包标识符不与描述文件包含的包标识符不一致,按照它的提示换一下就好了,最好不要点 ...

  7. ctr预估论文梳理和个人理解

    问题描述 ctr的全称是click through rate,就是预估用户的点击率,可以用于推荐系统的ranking阶段.ctr预估可以理解为给用户的特征.item的特征以及context的特征(比如 ...

  8. 【微学堂】线上Linux服务器运维安全策略经验分享

      技术转载:https://mp.weixin.qq.com/s?__biz=MjM5NTU2MTQwNA==&mid=402022683&idx=1&sn=6d403ab4 ...

  9. vue+node+elementUI实现注册功能

    后端代码 在后端的文件 routes文件夹下的connect.js文件中 // 引入mysql const mysql = require('mysql'); // 创建连接对象 const conn ...

  10. jmeter从上一个请求使用正则表达式抓取Set-Cookie值,在下一个请求中运用

    工作中遇到的问题,登录请求,返回的Response Headers中有个参数Set-Cookie,需要抓取这个参数,运用到下一个请求中,见下图: 通过正则表达式抓取Set-Cookie的值,由于该值存 ...