Description

对于正整数n (3≤n<20),可以画出n阶的回形矩阵。下面画出的分别是3阶的,4阶的和7阶的回形矩阵:



对于n阶回形矩阵,从左上角出发,每步可以向右或向下走一格,走2* n-2步,可以到达右下角。我们把这样的路

径上所有格子中的数值之和,叫做该路径的长度。本题要求,对于给出n值,求出n阶回形矩阵有多少路径的长度为

素数?如n=3时,路径及长度有:



因此说,3阶回形矩阵有2条路径的长度为素数。

Input

一个自然数n (3≤n<20,不必判错)。

Output

一个正整数,即n阶回形矩阵中长度为素数的路径的个数。

Sample Input

3

Sample Output

2

这道题目第一个难点在于构造回形矩阵。

说是回形矩阵,我们可以想象成一个nn的矩阵叠加(n-1)(n-1)的矩阵…然后就可以叠加成为一个回形矩阵,但是需要判断n的奇偶性。。。build函数如下:

void build(int s1,int n1)
{
if(s1==n1)
{
mp[s1][n1]=s1;
return;
}
else if(s1>n1)return;
for(int i=s1;i<=n1;i++)
{
for(int j=s1;j<=n1;j++)
{
mp[i][j]=s1;
}
}
build(s1+1,n1-1);
return;
}

顺便写出判断路径长度是否是质数的函数。。。

bool IsPrime/*这绝逼是我自己打的*/(int num)
{
if(num==1)
return 0;
if(num==2||num==3)
return 1;
if(num%6!=1&&num%6!=5)
return 0;
int tmp=sqrt(num);
for(int i=5;i<=tmp;i+=6)
if(num%i==0||num%(i+2)==0)
return 0;
return 1;
}

不懂的去翻我博客,有一篇专门讲这个的。

然后主要是搜索过程。

每个状态最多有两个拓展可能:

往右或往下,只要不出界,矩阵随便跑

然后注意判断是否出界就可以了,总体还不算难

#include<bits/stdc++.h>
using namespace std;
int n,mp[220][220],ans;
bool IsPrime/*这绝逼是我自己打的*/(int num)
{
if(num==1)
return 0;
if(num==2||num==3)
return 1;
if(num%6!=1&&num%6!=5)
return 0;
int tmp=sqrt(num);
for(int i=5;i<=tmp;i+=6)
if(num%i==0||num%(i+2)==0)
return 0;
return 1;
}
void build(int s1,int n1)
{
if(s1==n1)
{
mp[s1][n1]=s1;
return;
}
else if(s1>n1)return;
for(int i=s1;i<=n1;i++)
{
for(int j=s1;j<=n1;j++)
{
mp[i][j]=s1;
}
}
build(s1+1,n1-1);
return;
}
void dfs(int x,int y,int cnt)
{
if(x==n&&y==n)
{
if(IsPrime(cnt))
{
ans++;
}
return;
}
if(x<n)
{
cnt+=mp[x+1][y];
dfs(x+1,y,cnt);
cnt-=mp[x+1][y];
}
if(y<n)
{
cnt+=mp[x][y+1];
dfs(x,y+1,cnt);
cnt-=mp[x][y+1];
}
return;
}
int main()
{
cin>>n;
build(1,n);
dfs(1,1,1);
cout<<ans<<endl;
}

ov.

【题解】长度为素数的路径个数-C++的更多相关文章

  1. 【题解】最长递增路径 [51nod1274]

    [题解]最长递增路径 [51nod1274] 传送门:最长递增路径 \([51nod1274]\) [题目描述] 一个可能有自环有重边的无向图,每条边都有边权.输入两个整数 \(n,m\) 表示一共 ...

  2. 树形DP 统计树中长度为K的路径数量——Distance in Tree

    一.问题描述 给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500). 二.解题思路 设d[i][k]表示以i为根节点长度为k的路 ...

  3. 图遍历算法的应用(包括输出长度为l的路径最短最长路径)

    判断从顶点u到v是否有路径 void ExistPath(AdjGraph* G, int u, int v, bool& has) { int w; ArcNode* p; visit[u] ...

  4. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  5. 【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数

    http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equa ...

  6. 图中长度为k的路径的计数

    题意 给出一个有向图,其中每条边的边长都为1.求这个图中长度恰为 $k$ 的路劲的总数.($1 \leq n \leq 100, 1 \leq k\leq 10^9$) 分析 首先,$k=1$ 时答案 ...

  7. POJ 1284:Primitive Roots(素数原根的个数)

    Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5709 Accepted: 3261 Descr ...

  8. 判断无向图两点间是否存在长度为K的路径

    #include <iostream> #include <vector> #define MAXN 5 using namespace std; struct edge { ...

  9. 题解-[WC2011]最大XOR和路径

    [WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...

随机推荐

  1. linux清除日志文件

    #!/bin/bash # 清除log文件 LOG_DIR=/var/log ROOT_UID= # $UID为0的时候,用户才具有root用户的权限 LINES= # 默认的保存行数 E_XCD= ...

  2. Android零基础入门第32节:新推出的GridLayout网格布局

    原文:Android零基础入门第32节:新推出的GridLayout网格布局 本期主要学习的是网格布局是Android 4.0新增的布局,和前面所学的TableLayout表格布局 有点类似,不过他有 ...

  3. PE工具列表(看雪学院)

    PE编辑工具 Stud_PE v. 2.6.0.5 Stud_PE v.2.6.1.0 (2.61汉化版)   PE工具,用来学习PE格式十分方便. LordPE DLX增强版(2008.5.31) ...

  4. TApplicationEvents的前世今生(待续)

    这是它的声明,它的数据成员全部都是Event,而没有真正意义上的数据(如此一来,几乎可以猜测,它本身什么都做不了): TCustomApplicationEvents = class(TCompone ...

  5. Hadoop集群(第5期)SecureCRT使用

    1.SecureCRT简介   SecureCRT是一款支持SSH(SSH1和SSH2)的终端仿真程序,同时支持Telnet和rlogin协议.SecureCRT是一款用于连接运行包括Windows. ...

  6. client,offset,scroll系列

    client(客户端),offset(偏移),scroll(滚动)1.client系列 clientTop 内容区域到边框顶部的距离 ,说白了,就是边框的高度 clientLeft 内容区域到边框左部 ...

  7. ES 20 - 查询Elasticsearch中的数据 (基于DSL查询, 包括查询校验match + bool + term)

    目录 1 什么是DSL 2 DSL校验 - 定位不合法的查询语句 3 match query的使用 3.1 简单功能示例 3.1.1 查询所有文档 3.1.2 查询满足一定条件的文档 3.1.3 分页 ...

  8. DNS查询命令

    dig(domain information groper)是一个在类Unix命令行模式下查询DNS,包括NS记录,A记录,MX记录等相关信息的工具 一.简单介绍使用dig命令查询DNS的方法 dig ...

  9. redission-tomcat:快速实现从单机部署到多机部署

    原文地址: http://blog.jboost.cn/2019/06/29/session-redis.html 一些项目初期出于简单快速,都是做单机开发与部署,但是随着业务的扩展或对可用性要求的提 ...

  10. ABP之Setting

    介绍 每个应用程序都需要存储一些设置,并在应用程序的某个地方使用这些设置.ABP提供了一个强大的基础设施来存储/检索在服务器端和客户端都可用的应用程序.租户和用户级别设置. 设置是通常存储在数据库(或 ...