总结一下SLAM中关于非线性优化的知识。

先列出参考:

http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/

http://blog.csdn.net/dsbatigol/article/details/12448627

http://www.cnblogs.com/rongyilin/archive/2012/12/21/2827898.html

《视觉SLAM十四讲》。

1. 雅克比矩阵 && 海森矩阵

  雅克比矩阵(Jacobian)是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅克比行列式。它体现了一个可微方程与给出点的最优线性逼近,类似与多元函数的导数。

  假设F:Rn→Rm是一个从欧式n维空间转换到欧式m维空间的函数,这个函数由m个实函数组成:u1(x1,...,xn),...,um(x1,...,xn)。假设这些函数的偏导数存在,则雅克比矩阵可以写成:

  

  海森矩阵(Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,设函数为:f(x1,x2,...,xn),并假设f的二阶导数粗在,则其海森矩阵为:

  海森矩阵常被应用于牛顿法解决大规模的优化问题,具体可参考:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/。

2.最小二乘问题

  最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。

2.1 线性最小二乘

  已知M个N+1维空间点:

其中,

如何求的函数f(x):

可以构建最小二乘问题估计f(x)的参数:

写成矩阵形式为:

其中:

为了最小化上式,对w求导,并另导数等于0:

上式的获取需要先展开平方项,然后进行矩阵的求导。只要求出w矩阵就可以了,一般线性最小二乘需要用到Cholesky的分解,具体的求解过程就不展开了。

2.2 非线性最小的二乘

  非线性最小二乘指的是f(x)函数是一个非线性函数,导致导数的求解变的非常困难,因此需要求解非线性最小二乘问题的方法。而求解方法中就包括最速下降法,牛顿法,高斯-牛顿法(G-N),列文伯格-马夸尔特法(L-M)等,它们都是通过迭代的方式逼近最优解,下面分别做一个简单的介绍。

3. 1最速下降法

  它的思想是每次迭代选取一个步长λ,根据函数的梯度选择下降最快的方向,使得目标函数的值能够最大程度的下降。这里主要是理解算法思想,具体的算法操作还应该查阅相关书籍。我们假设f(x)是一个待优化的函数(其实对于最小二乘来说,它应该是一个残差函数,有的地方也叫cost founction):min1/2||f(x)||2,对其进行一阶泰勒展开:

其中的J(x)为雅克比矩阵,即函数平方关于x的导数,根据上式可以求取增量和步长λ,然后进入迭代循环。但是该方法收敛速度比较慢,直接使用最速下降法效果不好。

3.2 牛顿法

  牛顿法相比最速下降法更进一步,对待优化函数进行二阶泰勒展开:

则增量为:

它是一个关于雅克比矩阵和海森矩阵的问题,所以计算量稍大。

3.3 高斯-牛顿法

  可以看到上面的方法都是对残差函数的平方项直接进行泰勒展开,而高斯牛顿法则是对f(x)进行泰勒展开,然后对展开项进行平方和:

  

由于每次迭代都需要求解一个增量,现在可以构建关于增量的线性最小二乘问题:

因此只要对上式求导,并另导数为0,就能求解增量:

通常上式都写成如下形式:

获得这个增量方程,需要对上面的线性最小二乘问题进行矩阵的平方项计算以及相应的矩阵求导,其实这和前面说过的非线性最小二乘问题本质上是一样的,获得的数学结论也类似,但是关于上式的求解方法在SLAM系统里跟线性方法不太一样。

3.4 列文伯格-马夸尔特法

  L-M法是对高斯牛顿法的一个改进,给增量添加一个信赖区域:

分子是实际函数的下降值,分母是近似模型的下降值(分母的问题可以回忆一下微积分)。上式太小,说明实际下降值小于近视下降值,所以你的估计下降的太快了;如果上式太大,说明实际下降值大于近似下降值,所以你可以快点下降没关系。这样,高斯牛顿法的最小二乘问题变成:

用拉格朗日乘数法就是:

同样进行平方项的展开以及对增量的求导:

这就是L-M中的增量方程。

SLAM中的非线性优化的更多相关文章

  1. SLAM中的EKF,UKF,PF原理简介

    这是我在知乎上问题写的答案,修改了一下排版,转到博客里.   原问题: 能否简单并且易懂地介绍一下多个基于滤波方法的SLAM算法原理? 目前SLAM后端都开始用优化的方法来做,题主想要了解一下之前基于 ...

  2. SLAM中的优化理论(二)- 非线性最小二乘

    本篇博客为系列博客第二篇,主要介绍非线性最小二乘相关内容,线性最小二乘介绍请参见SLAM中的优化理论(一)-- 线性最小二乘.本篇博客期望通过下降法和信任区域法引出高斯牛顿和LM两种常用的非线性优化方 ...

  3. 视觉SLAM中的数学基础 第四篇 李群与李代数(2)

    前言 理解李群与李代数,是理解许多SLAM中关键问题的基础.本讲我们继续介绍李群李代数的相关知识,重点放在李群李代数的微积分上,这对解决姿态估计问题具有重要意义. 回顾 为了描述三维空间里的运动,我们 ...

  4. SLAM中的优化理论(一)—— 线性最小二乘

    最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对 ...

  5. 视觉SLAM中相机详解

    视觉SLAM中,通常是指使用相机来解决定位和建图问题. SLAM中使用的相机往往更加简单,不携带昂贵的镜头,以一定的速率拍摄周围的环境,形成一个连续的视频流. 相机分类: 单目相机:只是用一个摄像头进 ...

  6. SLAM中的变换(旋转与位移)表示方法

    1.旋转矩阵 注:旋转矩阵标题下涉及到的SLAM均不包含位移. 根据同一点P在不同坐标系下e(e1,e2,e3)e'(e1',e2',e3')的坐标a(a1,a2,a3)a'(a1',a2',a3') ...

  7. 视觉SLAM中的数学基础 第二篇 四元数

    视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM ...

  8. 视觉SLAM中的数学基础 第三篇 李群与李代数

    视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换 ...

  9. SLAM中的卡方分布

    视觉slam中相邻帧特征点匹配时,动辄上千个特征点,匹配错误的是难免的,而误匹配势必会对位姿精度以及建图精度造成影响,那么如何分辨哪些是误匹配的点对儿呢?如果已知两帧的的单应矩阵,假设单应矩阵是没有误 ...

随机推荐

  1. IT兄弟连 Java语法教程 流程控制语句 分支结构语句5

    5  switch-case条件语句 Java中的第二种分支控制语句时switch语句,switch语句提供了多路支持,因此可以使程序在多个选项中进行选择.尽管一系列嵌套if语句可以执行多路测试,然而 ...

  2. Oracle数据 查询操作日志

    SELECT t.SQL_TEXT, t.FIRST_LOAD_TIME,t.PARSING_SCHEMA_NAME FROM v$sqlarea t WHERE t.SQL_TEXT LIKE 'D ...

  3. 【前端知识体系-JS相关】你真的了解JavaScript编译解析的流程吗?

    1. JS编译解析的流程 1.1 JS运行分三步 语法分析(通篇扫描是否有语法错误),预编译(发生在函数执行的前一刻),解释执行(一行行执行). 1.2 预编译执行分五步 创建AO对象(Activat ...

  4. 多线程通信的两种方式? (可重入锁ReentrantLock和Object)

    (一)Java中线程协作的最常见的两种方式: (1)利用Object的wait().notify()和notifyAll()方法及synchronized (2)使用Condition.Reentra ...

  5. js-xlsx 实现前端 Excel 导出(支持多 sheet)

    之前写文章介绍了使用 js-xlsx 实现导入 excel 的功能,现在再介绍一下如何使用 js-xlsx 进行 excel 导出. [实现步骤] 1. 首先安装依赖 npm install xlsx ...

  6. Pycharm 疑难杂症

    1. Pycharm报错:AttributeError: 'NoneType' object has no attribute 'get'的解决办法 https://blog.csdn.net/fre ...

  7. java高并发系列 - 第2天:并发级别

    由于临界区的存在,多线程之间的并发必须受到控制.根据控制并发的策略,我们可以把并发的级别分为阻塞.无饥饿.无障碍.无锁.无等待几种. 阻塞 一个线程是阻塞的,那么在其他线程释放资源之前,当前线程无法继 ...

  8. FastJson中的ObjectMapper对象的使用详解

    写在前面:开发中经常用到json和对象的相互转换,下面将列出FastJson中ObjectMapper对象的API的使用 一.maven工程中pom导入<dependency> <g ...

  9. C# extract multiples from web pages based on OpenQA.Selenium.Chrome and ChromeDriver

    1.Install latest Chrome,Selenium.WebDriver, ChromeDriver Selenium.WebDriver 3.141.0; Selenium.WebDri ...

  10. 「SAP技术」SAP不够严谨?

    SAP不够严谨? 大家知道采购业务里,有一种特殊的采购形式,就是按单采购,意思是所采购的物料只用于指定的销售订单的销售出库.这种业务场景在SAP项目实践中,比较常见. 强大无比的SAP系统当然有解决方 ...