使用LaTex可以生成复杂的数学公式。

举例:

其LaTex语法如下: LaTex具有很强的可读性,例如 sum 表示求和,多练练就能掌握。

 \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}

LaTex目前已经成为“数理化”的行业的标准语法。因此,你不用担心学会了在其他系统里无法使用。

在word里,你也可以用LaTex语法写公式。

  

对于部分公式,需要注意:换行。这是因为,部分公式行较高,如果采用行内元素,可能显示错误,请勾选“换行”

 \frac{\partial u}{\partial t}
= h^2 \left( \frac{\partial^2 u}{\partial x^2}
+ \frac{\partial^2 u}{\partial y^2}
+ \frac{\partial^2 u}{\partial z^2} \right) \

  

 举例2

\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}

  

\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}

  

\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}

  

\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}

  

\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots& \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}

  

\begin{pmatrix}
a & b\\
c & d\\
\hline
1 & 0\\
0 & 1
\end{pmatrix}

  

\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}

  

\begin{align} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\ f'(x)&=\left(3x^2+2x+1\right)
+
\left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{align}

  

% outer vertical array of arrays
\begin{array}{c}
% inner horizontal array of arrays
\begin{array}{cc}
% inner array of minimum values
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
\\
% inner array of delta values
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
\end{array}

  

\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.

  

 \left\{ \begin{array}{l}
0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex]
0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right.

  

LaTex语法的更多相关文章

  1. CSDN markdown 编辑器 第四篇 LaTex语法

    Latex是为了写数学公式的. 嗯-但实际这样的语言的作用是为了排版的.数学公式仅仅是他的附加属性. 可是markdown引入这个全然是为了写公式.其它的Latex语法不支持. CSDN markdo ...

  2. CSDN-markdown语法之怎样使用LaTeX语法编写数学公式

    文件夹 文件夹 正文 标记公式 行内公式 块级公式 上标和下标 分数表示 各种括号 根号表示 省略号 矢量表示 间隔空间 希腊字母 特殊字符 关系运算符 集合运算符 对数运算符 三角运算符 微积分运算 ...

  3. markdown语法之如何使用LaTeX语法编写数学公式

    CSDN-markdown语法之如何使用LaTeX语法编写数学公式 目录 目录 正文 标记公式 行内公式 块级公式 上标和下标 分数表示 各种括号 根号表示 省略号 矢量表示 间隔空间 希腊字母 特殊 ...

  4. LaTeX 语法

    MathJax是什么? MathJax是一个开源JavaScript库.它支持LaTeX.MathML.AsciiMath符号,可以运行于所有流行浏览器上. LaTeX是什么? LaTeX(LATEX ...

  5. LaTeX语法笔记

    1.单词之间用空格分隔,段落之间用一整空行分隔,但是,如果在多输入空格或者空行也没有用处,系统还是把它当做一个空格或空行. 2.双引号:左侧用``(键盘左上角那个符号),右侧用'',即: ``'' , ...

  6. Latex 语法总结——层次结构

    层次结构~~documentclass[a4paper,11pt]{article}\usepackage{CJKutf8}\usepackage[top=1in, bottom=1in, left= ...

  7. LaTex公式语法教程及手册(附emlogpro公式显示插件katex说明)

    目录 第一列 第二列 第三列 效果 求和(使用\sum标签) 文本效果 本插件简介 积分(使用\int标签) 文本大小 LaTex是什么 空格 特殊符号 LaTex公式使用教程及手册 定界符 LaTe ...

  8. Linux 中优秀的文本化编辑思想大碰撞(Markdown、LaTeX、MathJax)

    这样一个标题可能不太准确,因为确实无法准确地解释什么叫"文本化编辑思想".其实我这篇随笔主要是想探讨 Markdown.LaTeX.MathJax,有兴趣的朋友可以继续往下看,同时 ...

  9. 再来说说 LaTeX

    在我的上一篇随笔中,我提到了 Markdown.LaTeX 和 MathJax.这几个东西对目前的网络技术文章的写作.展示都有深远的影响.在上一篇中,我还给出了一份 LaTeX 语法的学习资料.在这一 ...

随机推荐

  1. 使用ADO.NET实体数据模型

    前景:要操作的数据表必须添加主键(方式:进入数据库-->数据表名-->设计-->列名右键-->设置主键) 可在服务器资源管理器中查看是否设置了主键(主键会有一把钥匙的图样) 1 ...

  2. DataGridView中的rows.Count比实际行数多1的原因以及解决办法

    场景 DataGridView怎样实现添加.删除.上移.下移一行: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10281414 ...

  3. Zipkin客户端链路追踪源码解析

    我们知道,Zipkin这个工具可以帮助我们收集分布式系统中各个系统之间的调用连关系,而且除了Servlet之外还能收集:MQ.线程池.WebSocket.Feign.Hystrix.RxJava.We ...

  4. Windows10下安装解压版MySQL教程

    MySQL安装分为安装版和解压版,安装版主要是由一个exe程序式安装,有界面鼠标点击安装即可,小白建议使用安装版安装mysql,相比较与安装版,解压版安装更"纯净",没有多余的东西 ...

  5. 一则SQL优化案例

    原始sql: select CASE ) counts ,) else deadline end as deadline from t_product_credit) c group by sort ...

  6. UITableViewStyleGrouped 类型 tableView sectionHeader 高度问题

    UITableViewStyleGrouped 类型的 tableView 在适配的时候出现很大的问题.记录一下 按照之前的方法,只需要执行以下的代码就能够很好的解决 section == 0 的时候 ...

  7. Java collection 集合类架构

    https://www.cnblogs.com/fireflyupup/p/4875130.html Collection List 在Collection的基础上引入了有序的概念,位置精确:允许相同 ...

  8. 3.JavaCC 语法描述文件的格式解析

      JavaCC的语法描述文件格式如下所示: options { JavaCC的选项 } PARSER_BEGIN(解析器类名) package 包名; import 库名; public class ...

  9. 配置同时使用 Gitlab、Github、Gitee(码云) 共存的开发环境

    首先确认已安装Git,可以通过 git –version 命令可以查看当前安装的版本. Mac OSX 中都已经安装了Git.但是,Git的版本未必是最新的. 可以通过命令 git clone htt ...

  10. weblogic(一).简介与安装

    weblogic(一).简介与安装   WebLogic是美国Oracle公司出品的一个application server,确切的说是一个基于JAVAEE架构的中间件,WebLogic是用于开发.集 ...