使用LaTex可以生成复杂的数学公式。

举例:

其LaTex语法如下: LaTex具有很强的可读性,例如 sum 表示求和,多练练就能掌握。

 \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}

LaTex目前已经成为“数理化”的行业的标准语法。因此,你不用担心学会了在其他系统里无法使用。

在word里,你也可以用LaTex语法写公式。

  

对于部分公式,需要注意:换行。这是因为,部分公式行较高,如果采用行内元素,可能显示错误,请勾选“换行”

 \frac{\partial u}{\partial t}
= h^2 \left( \frac{\partial^2 u}{\partial x^2}
+ \frac{\partial^2 u}{\partial y^2}
+ \frac{\partial^2 u}{\partial z^2} \right) \

  

 举例2

\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}

  

\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}

  

\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}

  

\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}

  

\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots& \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}

  

\begin{pmatrix}
a & b\\
c & d\\
\hline
1 & 0\\
0 & 1
\end{pmatrix}

  

\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}

  

\begin{align} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\ f'(x)&=\left(3x^2+2x+1\right)
+
\left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{align}

  

% outer vertical array of arrays
\begin{array}{c}
% inner horizontal array of arrays
\begin{array}{cc}
% inner array of minimum values
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
\\
% inner array of delta values
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
\end{array}

  

\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.

  

 \left\{ \begin{array}{l}
0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex]
0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right.

  

LaTex语法的更多相关文章

  1. CSDN markdown 编辑器 第四篇 LaTex语法

    Latex是为了写数学公式的. 嗯-但实际这样的语言的作用是为了排版的.数学公式仅仅是他的附加属性. 可是markdown引入这个全然是为了写公式.其它的Latex语法不支持. CSDN markdo ...

  2. CSDN-markdown语法之怎样使用LaTeX语法编写数学公式

    文件夹 文件夹 正文 标记公式 行内公式 块级公式 上标和下标 分数表示 各种括号 根号表示 省略号 矢量表示 间隔空间 希腊字母 特殊字符 关系运算符 集合运算符 对数运算符 三角运算符 微积分运算 ...

  3. markdown语法之如何使用LaTeX语法编写数学公式

    CSDN-markdown语法之如何使用LaTeX语法编写数学公式 目录 目录 正文 标记公式 行内公式 块级公式 上标和下标 分数表示 各种括号 根号表示 省略号 矢量表示 间隔空间 希腊字母 特殊 ...

  4. LaTeX 语法

    MathJax是什么? MathJax是一个开源JavaScript库.它支持LaTeX.MathML.AsciiMath符号,可以运行于所有流行浏览器上. LaTeX是什么? LaTeX(LATEX ...

  5. LaTeX语法笔记

    1.单词之间用空格分隔,段落之间用一整空行分隔,但是,如果在多输入空格或者空行也没有用处,系统还是把它当做一个空格或空行. 2.双引号:左侧用``(键盘左上角那个符号),右侧用'',即: ``'' , ...

  6. Latex 语法总结——层次结构

    层次结构~~documentclass[a4paper,11pt]{article}\usepackage{CJKutf8}\usepackage[top=1in, bottom=1in, left= ...

  7. LaTex公式语法教程及手册(附emlogpro公式显示插件katex说明)

    目录 第一列 第二列 第三列 效果 求和(使用\sum标签) 文本效果 本插件简介 积分(使用\int标签) 文本大小 LaTex是什么 空格 特殊符号 LaTex公式使用教程及手册 定界符 LaTe ...

  8. Linux 中优秀的文本化编辑思想大碰撞(Markdown、LaTeX、MathJax)

    这样一个标题可能不太准确,因为确实无法准确地解释什么叫"文本化编辑思想".其实我这篇随笔主要是想探讨 Markdown.LaTeX.MathJax,有兴趣的朋友可以继续往下看,同时 ...

  9. 再来说说 LaTeX

    在我的上一篇随笔中,我提到了 Markdown.LaTeX 和 MathJax.这几个东西对目前的网络技术文章的写作.展示都有深远的影响.在上一篇中,我还给出了一份 LaTeX 语法的学习资料.在这一 ...

随机推荐

  1. oracle学习笔记(二十二) REF 动态游标

    动态游标 定义语法 --声明 $cursor_name$ sys_refcursor --打开动态游标 open $cursor_name$ is 查询语句; --关闭游标 close $cursor ...

  2. Python爬虫动态User-Agent

    下载库fake_useragent 然后就可以随心所欲的使用不同UA了

  3. MySqlBulkLoader 中文乱码

    MySQL驱动:MySqlConnector GitHub地址:https://github.com/mysql-net/MySqlConnector.git 文档地址:https://mysql-n ...

  4. 挑战常规 -- 为什么不要再用cookie作为储存?

    不要使用cookie当存储 Cookie 是什么? Cookie 由浏览器储存在本地,每次访问目标网址会带上的请求头,服务器可以通过Set-Cookie响应头设置Cookie. Cookie的用途 由 ...

  5. 微信语音短消息amr文件转WAV

    - amr说明 - 转WAV程序 我对SILK编码库稍作修改,编译了一个Windows下可直接将SILK V3编码转换为WAV格式,并支持原生的微信语音短消息amr文件的版本,提供给大家使用,压缩包( ...

  6. MAC TXT文本

    Mac系统下.txt格式的纯文本怎么保存? 作者:佚名 字体:[增加 减小] 来源:互联网 时间:06-02 14:29:23 我要评论 Mac系统下.txt格式的纯文本怎么保存?.txt是个用途广泛 ...

  7. Service__cmd安装MySQL并连接SQLyog

    整理记录关于使用cmd安装mysql的过程   1.配置环境变量 1) 计算机->属性->高级系统设置->环境变量 2)先添加变量 变量名:MYSQL_HOME 变量值:D:\mys ...

  8. [PHP] 安装PHP报错“Primary script unknown”的解决方法

    当安装完最新版的nginx和最新版的PHP以后,使用niginx默认配置文件中的PHP配置会有错误访问指定目录下的php文件时,显示File not found.错误.查看nginx的错误日志显示 9 ...

  9. Shell命令-系统信息及显示之df、top

    文件及内容处理 - df.top 1. df:报告文件系统磁盘空间的使用情况 df命令的功能说明 df 命令用于显示目前在Linux系统上的文件系统的磁盘使用情况统计. df命令的语法格式 df [O ...

  10. 不能聚焦元素问题 WebDriverException: Message: unknown error: cannot focus element

    上周碰到了 Unable to locate element,即“无法定位元素”,后靠两行代码解决: wait = ui.WebDriverWait(driver,5) wait.until(lamb ...