1. Introduction


Much like Newton's method is a standard tool for solving unconstrained smooth minimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed version of these problems. They are very generally applicable, but they turn out to be especially well-suited to problems of recent and widespread interest involving large or high-dimensional datasets.

Proximal methods sit at a higher level of abstraction than classical optimization algorithms like Newton’s method. In the latter, the base operations are low-level, consisting of linear algebra operations and the computation of gradients and Hessians. In proximal algorithms, the base operation is evaluating the proximal operator of a function, which involves solving a small convex optimization problem. These subproblems can be solved with standard methods, but they often admit closedform solutions or can be solved very quickly with simple specialized methods. We will also see that proximal operators and proximal algorithms have a number of interesting interpretations and are connected to many different topics in optimization and applied mathematics.

2. Algorithms


For following convex optimization problem

$$\min_{x}f(x)+g(x)$$

where $f$ is smooth, $g:R^n\rightarrow R\cup \{+\infty\}$ is closed proper convex.

Generally, there are several proximal methods to solve this problem.

  • Proximal Gradient Method

$$x^{k+1}:=prox_{\lambda^kg}(x^k-\lambda^k \nabla f(x^k)$$

which converges with rate $O(1/k)$ when $\nabla f$ is Lipschitz continuous with constant L and step sizes are $ \lambda^k=\lambda\in(0,1/L]$. If $L$ is not known, we can use the following line search:

Typical value of $\beta$ is 1/2, and

$$\hat{f}_{\lambda}(x,y)=f(y)+\nabla f(y)^T(x-y)+(1/2\lambda)||x-y||_{2}^2$$

  • Accelerated Proximal Gradient Method

$$y^{k+1}=x^k+\omega (x^k-x^{k-1})$$

$$x^{k+1}:=prox_{\lambda^kg}(y^{k+1}-\lambda^k \nabla f(y^{k+1}))$$

works for $\omega^k=k/(k+3)$ and similar line search as before.

This method has faster $O(1/k^2)$ convergence rate, originated with Nesterov (1983)

  • ADMM

$$x^{k+1}:=prox_{\lambda f}(z^k-u^k)$$

$$z^{k+1}:=prox_{\lambda g}(x^{k+1}+u^k)$$

$$u^{k+1}:=u^k+x^{k+1}-z^{k+1}$$

basiclly, always works and has $O(1/k)$ rate in general. If $f$ and $g$ are both indicators, get a variation on alternating projections.

This method originates from Gabay, Mercier, Glowinski, Marrocco in 1970s.

3. Example


You are required to solve the following optimization problem

$$\min_{x}\frac{1}{2}x^TAx+b^Tx+c+\gamma||x||_{1}$$

where

$$A=\begin{pmatrix} 2 & 0.25 \\ 0.25 & 0.2 \end{pmatrix},\;b=\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix},\; c=-1.5, \; \lambda=0.2$$

As for this problem, if $f(x)=\frac{1}{2}x^TAx+b^Tx+c$ and $g(x)=\gamma||x||_{1}$ then

$$\nabla f(x)=Ax+b$$

If $g=||\cdot||_{1}$, then

$$prox_{\lambda f}(v)=(v-\lambda)_{+}-(-v-\lambda)_{+}$$

So the update step is

$$x^{k+1}:=prox_{\lambda^k \gamma||\cdot||_{1}}(x^k-\lambda^k \nabla f(x^k))$$

Finally, the 2D coutour plot of objective function and the trajectory of the value update are showed in following figure.

Additionally, when we use proximal gradient method based on exact line search to optimize the objective function, the result is:

We can find that proximal algorithm can solve this nonsmooth sonvex optimization problem successfully. And method based on exact line search can obtain faster convergence rate than one based on backtracking line search.

If you want to learn proximal algorithms further, you can read the book "Proximal Algorithms" by N. Parikh and S. Boyd, and corresponding website: http://web.stanford.edu/~boyd/papers/prox_algs.html

References


Parikh, Neal, and Stephen P. Boyd. "Proximal Algorithms." Foundations and Trends in optimization 1.3 (2014): 127-239.


 




 

Proximal Algorithms的更多相关文章

  1. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  2. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  3. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  4. Proximal Algorithms 3 Interpretation

    目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...

  5. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  6. Proximal Algorithms 7 Examples and Applications

    目录 LASSO proximal gradient method ADMM 矩阵分解 ADMM算法 多时期股票交易 随机最优 Robust and risk-averse optimization ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  9. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

随机推荐

  1. 【Javascript Demo】遮罩层和百度地图弹出层简单实现

    其实想做的就是显示百度地图的弹出层,现在已经简单实现了.示例和代码如下,点击按钮可以看到效果: 1.示例:   2.代码: <!DOCTYPE html PUBLIC "-//W3C/ ...

  2. J2SE 8的反射

    1.获得Class的四种方式 //(1) 利用对象调用getClass()方法获取该对象的Class实例 Class<? extends ReflectTest> class1 = new ...

  3. rar 按日期时间备份

    @echo off echo. echo backup start,please wait ... for /f %%i in ('date /t') do rar u F:\liaobin\bak\ ...

  4. 7 python 类的组合

    1.组合与重用性 软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中以另外一个类的对象作为 1.一个类的属性可以是一个类对象,通常情况下在一个类里面很少定义一个对象就是它 ...

  5. liblas 1.8.1编译安装

    liblas https://github.com/libLAS/libLAS/issues/102 https://liblas.org/start.html 源码 https://github.c ...

  6. Javascript系列:总体理解

    js是一个脚本客户端(浏览器)语言.和sql html类似.多练习. 没有排错的经验,弱类型语言,浏览器解释执行,出错也不会报错 预备 <!DOCTYPE html PUBLIC "- ...

  7. freemaker基础语法

      1.freemarker中Request,Session的用法:java块:request.getSession().setAttribute("qq","http: ...

  8. Linux就业技术指导(六):天津IDC机房项目实践

    一,天津IDC机房项目图片介绍 服务器DELL R720 二,远程控制卡配置方法 远程控制卡,在服务器没有装操作系统或者操作系统出问题了.用户可以通过连接到远程控制卡来连接服务器,就如同切换到我们的虚 ...

  9. 大型运输行业实战_day03_2_使用ajax将请求页面与请求数据分离

    1.引入jquery 1.添加jquery包 2.在要使用jquery的页面中引入jquery 引入jquery后必须检查是否引入正确,这里值得注意的是 springMVC默认情况先会拦截 js文件, ...

  10. mysql datetime与timestamp精确到毫秒的问题

    CREATE TABLE `tab1` (`tab1_id` VARCHAR(11) DEFAULT NULL,`create` TIMESTAMP(3) NULL DEFAULT NULL,`cre ...