Portal --> bzoj2741

Solution

  突然沉迷分块不能自拔

  考虑用分块+可持久化trie来解决这个问题

  对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间的最大异或和,这个可以做到\(O(n\sqrt nlogn)\),实现上的话就是。。将一段区间\([l,r]\)的异或和写成\(sum[r]\ xor \ sum[l-1]\)的形式,然后对于每一个

\(i\)应该是\([L,i-1]\)的答案和所有以\(i\)结尾的子区间的异或和的最大值,右端点固定的话直接在可持久化trie里面查一下就好了(弱智如我一开始在这个地方莫名卡壳==)

  然后查询的时候,如果说\(l,r\)在同一块里面,直接暴力查

  如果不在同一块里面,把\(l\)所在的块单独处理一下,然后再用答案和下一块的块头\(x\)预处理出来的\([x,r]\)的答案取一下max即可

  long long 警告qwq,所以trie的层数要开大一点。。

  

  mark:可持久化trie在insert的时候记得newnode要放在d<0的判断之前。。

  

  代码大概长这个样子

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
const int N=12010,M=6010,B=109+10;
ll a[N],sum[N];
int n,m,num,sq;
ll lastans;
namespace Trie{/*{{{*/
const int N=::N*40,TOP=33;//just for debuging!!!
int ch[N][2],rt[N],sz[N];
int tot;
void init(){tot=0; sz[0]=0; rt[0]=0; ch[0][0]=ch[0][1]=0;}
int newnode(int pre){
ch[++tot][0]=ch[pre][0]; ch[tot][1]=ch[pre][1]; sz[tot]=sz[pre];
return tot;
}
void _insert(int pre,int &x,ll delta,int d){
x=newnode(pre);
++sz[x];
if (d<0) return;
int dir=delta>>d&1;
_insert(ch[pre][dir],ch[x][dir],delta,d-1);
}
void insert(int pre,int x,ll delta){++pre; ++x;_insert(rt[pre],rt[x],delta,TOP);}
ll _query(int L,int R,ll delta,int d){
if (d<0) return 0;
int dir=delta>>d&1;
if (sz[ch[R][dir^1]]-sz[ch[L][dir^1]])
return (1LL<<d)+_query(ch[L][dir^1],ch[R][dir^1],delta,d-1);
return _query(ch[L][dir],ch[R][dir],delta,d-1);
}
ll query(int L,int R,ll delta){++L;++R; return L>R?0:_query(L?rt[L-1]:0,rt[R],delta,TOP);}
}/*}}}*/
ll rec[B][N];
int Id(int x){return (x-1)/sq+1;}
int St(int x){return (x-1)*sq+1;}
int Ed(int x){return x*sq;}
void prework(){
Trie::init();
for (int i=0;i<=n;++i)
Trie::insert(i-1,i,sum[i]); int x;
num=Id(n);
for (int i=1;i<=num;++i){
x=St(i);
rec[i][x]=a[x];
for (int j=x+1;j<=n;++j)
rec[i][j]=max(rec[i][j-1],Trie::query(x-1,j-1,sum[j]));
}
}
ll query(int l,int r){
ll ret=0;
int numl=Id(l),numr=Id(r);
if (numl==numr){
for (int i=l;i<=r;++i)
ret=max(ret,Trie::query(i,r,sum[i-1]));
return ret;
}
if (l==St(numl))
ret=max(ret,rec[numl][r]);
else
for (int i=l;i<=Ed(numl);++i)
ret=max(ret,Trie::query(i,r,sum[i-1]));
ret=max(ret,rec[numl+1][r]);
return ret;
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int l,r,x,y;
scanf("%d%d",&n,&m);
sum[0]=0; sq=sqrt(n);
for (int i=1;i<=n;++i)
scanf("%lld",a+i),sum[i]=sum[i-1]^a[i];
prework();
lastans=0;
for (int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
l=min((1LL*x+lastans)%n+1,(1LL*y+lastans)%n+1);
r=max((1LL*x+lastans)%n+1,(1LL*y+lastans)%n+1);
lastans=query(l,r);
printf("%lld\n",lastans);
}
}

【bzoj2741】[FOTILE模拟赛] L的更多相关文章

  1. BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)

    显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...

  2. BZOJ2741:[FOTILE模拟赛]L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  3. 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  4. 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块

    题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...

  5. BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)

    题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...

  6. bzoj 2741 [FOTILE模拟赛] L

    Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...

  7. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

  8. BZOJ2741: 【FOTILE模拟赛】L

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1170  Solved: 303[Submit][Status] ...

  9. bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] ...

随机推荐

  1. 新手Python第一天(接触)

    Python 变量 Python的变量由字母,数字,下划线组成不包含特殊字符,不能以数字开头 可以使用的名称 例如:name,name2,my_name 不可使用的名称 例如:if...(Python ...

  2. mysql 连接超时解决方案: 怎样修改默认超时时间

    mysql数据库有一个wait_timeout的配置,默认值为28800(即8小时). 在默认配置不改变的情况下,如果连续8小时内都没有访问数据库的操作,再次访问mysql数据库的时候,mysql数据 ...

  3. fdisk命令详解

    基础命令学习目录 原文链接:https://www.cnblogs.com/xiaofengkang/archive/2011/06/06/2073579.html fdisk -l 可以列出所有的分 ...

  4. 【Alpha】Task分配与计划发布

     团队项目链接 以上大概是我们的任务分配,根据目前的预计时间来看,到α版本项目稳定下来至少需要440小时的开发时间才能完成. 项目最大的问题点和难点在于其数据量非常之大,计算模块要求非常之多,想象一下 ...

  5. 20162327WJH第一次实验——线性结构

    20162327WJH第一次实验--线性结构 实 验 报 告 实 验 报 告 课程:程序设计与数据结构 班级: 1623 姓名: 王旌含 学号:20162327 成绩: 2分 指导教师:娄嘉鹏 王志强 ...

  6. Ubuntu16.04下 编译安装 Tensorflow

    安装bazel sudo ./bazel***.sh 输入bazel version 检查是否安装. 编译tensorflow 1)./configure 除了选择支持cuda是y,其余的都选择n. ...

  7. ubuntu下安装matlab2015b

    ========= 安装过程 1.下载MATLAB2015b破解版 操作系统:Ubuntu 16.04 LTS 程序文件:Matlab2015b-glnxa64破解版 解压提取文件:在ubuntu系统 ...

  8. 阅读<构建之法>第三10、11、12章并提出问题

    <构建之法>第10.11.12章 第10章: 问题:对我们了解了用户的需求后,但是我们想法和做出来的软件会和用户的需求有偏差,比如风格.界面的修饰等等,那么我们程序猿怎样才能让自己的想法更 ...

  9. Beta冲刺 (6/7)

    队名:天机组 组员1友林 228(组长) 今日完成:修改代码 明天计划:封装代码 剩余任务:优化网络通讯机制 主要困难:暂无 收获及疑问:暂无 组员2方宜 225 今日完成:优化了一部分活动,调整了界 ...

  10. JAVA自学日记——Part Ⅱ

    今天学习了类与对象,其中关于this关键字的用法,static静态变量与静态方法,以及引用传递需要特别注意一下. 首先是引用传递: 在本段程序中可以通过进行外部对类对象的属性赋值来更改,同时也可以通过 ...