前言

————————————————————————————————————————

在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。
这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。

那什么是特征数字化呢?例子如下:

  • 性别特征:["男","女"]

  • 祖国特征:["中国","美国,"法国"]

  • 运动特征:["足球","篮球","羽毛球","乒乓球"]

假如某个样本(某个人),他的特征是这样的["男","中国","乒乓球"],我们可以用 [0,0,4] 来表示,但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的(运动数据就是任意排序的)。

什么是独热编码(One-Hot)?

————————————————————————————————————————

One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

One-Hot实际案例

————————————————————————————————————————

就拿上面的例子来说吧,性别特征:["男","女"],按照N位状态寄存器来对N个状态进行编码的原理,咱们处理后应该是这样的(这里只有两个特征,所以N=2):

男  =>  10

女  =>  01

祖国特征:["中国","美国,"法国"](这里N=3):

中国  =>  100

美国  =>  010

法国  =>  001

运动特征:["足球","篮球","羽毛球","乒乓球"](这里N=4):

足球  =>  1000

篮球  =>  0100

羽毛球  =>  0010

乒乓球  =>  0001

所以,当一个样本为["男","中国","乒乓球"]的时候,完整的特征数字化的结果为:

[1,0,1,0,0,0,0,0,1]

下图可能会更好理解:

One-Hot在python中的使用

————————————————————————————————————————

1
2
3
4
5
6
7
8
from sklearn import preprocessing  
   
enc = preprocessing.OneHotEncoder()  
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])  #这里一共有4个数据,3种特征
   
array = enc.transform([[0,1,3]]).toarray()  #这里使用一个新的数据来测试
   
print array   # [[ 1  0  0  1  0  0  0  0  1]]

结果为 1 0 0 1 0 0 0 0 1

为什么使用one-hot编码来处理离散型特征?

————————————————————————————————————————

在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

而我们使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。

将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。

比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么x_1和x_3工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之间的距离就都是sqrt(2).即每两个工作之间的距离是一样的,显得更合理。

不需要使用one-hot编码来处理的情况

————————————————————————————————————————电动叉车

将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。

比如,该离散特征共有1000个取值,我们分成两组,分别是400和600,两个小组之间的距离有合适的定义,组内的距离也有合适的定义,那就没必要用one-hot 编码。

离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

机器学习:数据预处理之独热编码(One-Hot)的更多相关文章

  1. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  2. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  3. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  4. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  5. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  6. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  8. Scikit-learn库中的数据预处理:独热编码(二)

    在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...

  9. 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?

    一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下:  在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...

随机推荐

  1. Python3的动态加载模块简单实例

    import os import sys import time import myconfig b = ['123'] a = os.path.abspath(myconfig.__file__) ...

  2. 一条SQL语句执行得很慢原因有哪些

    一条SQL语句执行得很慢,要分两种情况: 1.大多数情况是正常,偶尔很慢 数据库在处理数据忙时候,更新或新增数据都会暂时记录到redo log日志,等空闲时把数据同步到磁盘.假设数据库一直很忙,更新又 ...

  3. NYOJ17 最长单调递增子序列 线性dp

    题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=17 分析: i=1 dp[i]=1 i!=1 dp[i]=max(dp[j]+1) ...

  4. iOS 倒计时的一种实现

    1.view [self performSelectorInBackground:@selector(thread) withObject:nil]; - (void)thread { ;i>= ...

  5. 图片 和 base64 互转

    图片转base64 NSData *data = [NSData dataWithContentsOfURL:[NSURL URLWithString:urlStr]]; UIImage *img = ...

  6. springMVC框架 对BaseCtrl封装,简化开发

    让你的项目有对象,你的项目如何才会有面向对象特征呢?没有面向对象特征的项目不是好项目哦.此篇博文会使用到面向对象特征中的封装继承,还有就是枚举类型.这篇博文教你如何让你的项目体现面向对象特征. 最近公 ...

  7. Dynamics 365 可编辑子网格的字段禁用不可编辑

    在365中引入了subgrid的行可编辑,那随之带来的一个问题就是,在主表单禁用的状态下,如何禁用行编辑呢,这里就用到了subgrid的OnRecordSelect方法. 代码很简单,   我这里是禁 ...

  8. [Golang学习笔记] 02 命令源码文件

    源码文件的三种类型: 命令源文件:可以直接运行的程序,可以不编译而使用命令“go run”启动.执行. 库源码文件 测试源码文件 面试题:命令源码文件的用途是什么,怎样编写它? 典型回答: 命令源码文 ...

  9. 2017-2018-1 20155207&20155308《信息安全技术》实验四-木马及远程控制技术

    2017-2018-1 20155207&20155308<信息安全技术>实验四-木马及远程控制技术 实验目的 剖析网页木马的工作原理 理解木马的植入过程 学会编写简单的网页木马脚 ...

  10. 成都Uber优步司机奖励政策(4月24日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...