题解

感觉极其神奇的状压dp

\(dp[i][S]\)表示答案为i,然后不可选的点集为S

我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能选,那么方案就是把x个数在y - 1(由于空余位置的第一个要放我们选的那个点)个位置里任意排列,方案数是\(A^{y - 1}_{x}\)

复杂度是\(O(n^2 2^n)\)但是由于我们及时的break掉它跑的飞快= =

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#define enter putchar('\n')
#define space putchar(' ')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define pii pair<int,int>
#define eps 1e-7
#define MAXN 3005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
} const int MOD = 998244353; int N,M;
int fac[25],invfac[25],inv[25];
int AD[25],dp[25][(1 << 20) + 5],cnt[(1 << 20) + 5],A[25][25];
bool vis[(1 << 20) + 5];
int lowbit(int x) {
return x & (-x);
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
void Init() {
inv[1] = 1;
for(int i = 2 ; i <= 20 ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
invfac[0] = fac[0] = 1;
for(int i = 1 ; i <= 20 ; ++i) fac[i] = mul(fac[i - 1],i),invfac[i] = mul(invfac[i - 1],inv[i]);
read(N);read(M);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
AD[u] |= 1 << v - 1;
AD[v] |= 1 << u - 1;
}
for(int i = 1 ; i <= N ; ++i) AD[i] |= 1 << i - 1;
for(int i = 1 ; i < (1 << N) ; ++i) cnt[i] = cnt[i - lowbit(i)] + 1;
}
void Solve() {
vis[0] = 1;
int c = 0;
for(int i = 1 ; i < (1 << N) ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(i >> (j - 1) & 1) {
if(!(AD[j] & (i ^ (1 << j - 1)))) {
vis[i] |= vis[i ^ (1 << j - 1)];
}
break;
}
}
if(vis[i]) c = max(c,cnt[i]);
}
for(int i = 0 ; i <= N ; ++i) {
for(int j = 0 ; j <= i ; ++j) {
A[i][j] = mul(fac[i],invfac[i - j]);
}
}
dp[0][0] = 1;
for(int i = 0 ; i < N ; ++i) {
for(int S = 0 ; S < (1 << N) ; ++S) {
if(!dp[i][S]) continue;
for(int j = 1 ; j <= N ; ++j) {
if((1 << j - 1) & S) continue;
dp[i + 1][S | AD[j]] = inc(dp[i + 1][S | AD[j]],
mul(dp[i][S],A[N - cnt[S] - 1][cnt[S | AD[j]] - cnt[S] - 1]));
}
}
}
int ans = 0;
for(int S = 0 ; S < (1 << N) ; ++S) {
ans = inc(ans,dp[c][S]);
}
out(mul(ans,invfac[N]));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【LOJ】 #2540. 「PKUWC2018」随机算法的更多相关文章

  1. loj#2540. 「PKUWC2018」随机算法

    传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...

  2. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  3. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  4. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  5. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  6. LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】

    LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...

  7. loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)

    题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...

  8. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...

  9. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

随机推荐

  1. iis配置访问错误

    最近换工作,忙着熟悉新的环境,新的框架技术(银行用的EBF),各种碰坑. 总结一下iis配置过程当中遇到的一个坑------ 按照环境搭配手册一步一步的配置,在我机器上访问一直报500的错,但是同样的 ...

  2. Spring和springmvc父子容器注解扫描问题详解

      一.Spring容器和springmvc容器的关系如下图所示: Spring和springmvc和作为两个独立的容器,会把扫描到的注解对象分别放到两个不同的容器中, Springmvc容器是spr ...

  3. Jenkins配置定时任务

    在任务配置中,滚动到构建触发器-->勾选"Build periodically"-->在输入框中配置触发时间 以上配置,表示在6月13日23点触发. 如果配置成  00 ...

  4. 《编写高质量代码:改善JavaScript程序的188个建议》学习小记(二)

    建议3:减少全局变量污染 1.把多个全局变量都追加在一个名称空间下,将显著降低与其他应用程序产生冲突的概率,应用程序也会变得更容易阅读. var My = {}; My.name = { " ...

  5. 20155227 2016-2017-2 《Java程序设计》第四周学习总结

    20155227 2016-2017-2 <Java程序设计>第四周学习总结 教材学习内容总结 继承 继承 继承是Java程序设计语言面向对象的又一重要体现,允许子类继承父类,避免重复的行 ...

  6. 【转】Graphics.DrawImage 方法 IntPtr 结构 GDI 句柄 知识收集

    Graphics.DrawImage 方法 在指定的位置使用原始物理大小绘制指定的 Image. 命名空间:System.Drawing 程序集:System.Drawing(在 system.dra ...

  7. Python练习-猜年龄的LowB游戏

    Alex大神今天让我做一个猜年龄的游戏: 第一个游戏是你只能猜三次:真的很LowB啊~ # 编辑者:闫龙 #猜年龄游戏,3次后程序自动退出! ages = 29; #for循环3次 for i in ...

  8. 莫烦课程Batch Normalization 批标准化

    for i in range(N_HIDDEN): # build hidden layers and BN layers input_size = 1 if i == 0 else 10 fc = ...

  9. nand flash 的oob 及坏块管理

    0.NAND的操作管理方式      NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 ...

  10. python基础-类的反射

    1)反射是通过字符串方式映射内存中的对象. python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr, 改四个函数分别用于对对象内部执行:检查是 ...