LOJ #2985. 「WC2019」I 君的商店
传送门
搬题解QwQ
首先最大值一定为 \(1\),直接扫一遍两两比较 \(O(2N)\) 求出最大值
设最大值位置为 \(a\),对于任意两个没有确定的位置 \(x,y\)
询问 \([a,x+y]\),如果 \(a\le x+y\) 那么 \(x,y\) 的最大值为 \(1\),否则 \(x,y\) 最小值为 \(0\)
再询问 \([x,y]\) 即可
复杂度 \(O(7N)\)
考虑 \(Task3\),首先花费 \(2\) 的代价找到端点的 \(1\)
假设序列为 \(00000....11111\),只需要找到最靠前的位置 \(x\),使得 \(x+(x+1)\ge 1\),二分即可
然后 \(\ge x+1\) 的位置都是 \(1\),\(< x\) 的位置都是 \(0\),利用奇偶性判断 \(x\) 是否为 \(1\)
再考虑 \(Task6\),猜想复杂度为 \(5N+3logN\) 左右
任取三个没有确定的位置 \(x,y,a\),询问 \([x+y,a]\),再花费 \(2\) 的代价确定 \(x\le y\) 或者 \(y\ge x\)
假设 \(x\le y\)
如果 \(x+y\le a\),那么 \(x=0\)
否则 \(y\ge a\),把 \(y\) 当成新的 \(a\) 继续做
最后可以得到一个不确定的位置 \(z\) 和一条递增的链 \(x_1...x_k\),其它的都是 \(0\)
\(max(z,x_k)\) 一定为 \(1\),那么可以直接用 \(Task3\) 的方法二分
最后利用常数的代价 \(+\) 奇偶性求出 \(z\) 和二分中不确定的位置
# include "shop.h"
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(1e5 + 5);
int tmp1[2], tmp2[2], que[maxn], cnt, st[maxn], tp;
inline int Query1(int x, int y) {
tmp1[0] = x, tmp2[0] = y;
return query(tmp1, 1, tmp2, 1);
}
inline int Query2(int x, int y, int z) {
tmp1[0] = x, tmp1[1] = y, tmp2[0] = z;
return query(tmp1, 2, tmp2, 1);
}
inline int Binary(int n, int k, int *ans) {
int i, l, r, mid, ret, v;
l = 0, ret = n - 1, r = n - 2;
while (l <= r) {
mid = (l + r) >> 1;
if (!Query2(que[mid], que[mid + 1], que[n - 1])) ret = mid, r = mid - 1;
else l = mid + 1;
}
v = ret;
if (((n - ret) & 1) ^ k) ++ret;
for (i = 0; i < ret; ++i) ans[que[i]] = 0;
for (i = ret; i < n; ++i) ans[que[i]] = 1;
return v;
}
void find_price(int task_id, int n, int k, int ans[]) {
int i, mx = 0, ret;
for (i = 0; i < n; ++i) ans[i] = 0;
if (task_id == 3) {
for (i = 0; i < n; ++i) que[i] = i;
if (!Query1(0, n - 1)) reverse(que, que + n);
Binary(n, k, ans);
}
/* times = 7N
else {
for (i = 1; i < n; ++i) if (Query1(mx, i)) mx = i;
ans[mx] = 1, cnt = 0, k ^= 1;
for (i = 0; i < n; ++i) if (i ^ mx) que[++cnt] = i;
while (cnt > 1) {
if (Query2(que[cnt], que[cnt - 1], mx)) {
if (!Query1(que[cnt], que[cnt - 1])) swap(que[cnt], que[cnt - 1]);
ans[que[cnt]] = 0;
}
else {
if (Query1(que[cnt], que[cnt - 1])) swap(que[cnt], que[cnt - 1]);
ans[que[cnt]] = 1, k ^= 1;
}
--cnt;
}
if (k && cnt) ans[que[1]] = 1;
}
*/
else {
if (n == 1) {
ans[0] = 1;
return;
}
if (n == 2) {
mx = Query1(0, 1) ? 1 : 0;
ans[mx] = 1;
if (!k) ans[mx ^ 1] = 1;
return;
}
st[0] = cnt = 0, tp = 1;
for (i = 1; i < n; ++i) que[++cnt] = i;
while (cnt > 1) {
if (Query2(que[cnt], que[cnt - 1], st[tp - 1])) {
if (!Query1(que[cnt], que[cnt - 1])) swap(que[cnt], que[cnt - 1]);
ans[que[cnt]] = 0;
}
else {
if (Query1(que[cnt], que[cnt - 1])) swap(que[cnt], que[cnt - 1]);
st[tp++] = que[cnt];
}
--cnt;
}
if (Query1(que[cnt], st[tp - 1])) {
ans[st[tp - 1]] = 1, mx = que[cnt], cnt = 0;
for (i = 0; i < tp; ++i) que[cnt++] = st[i];
ret = Binary(cnt, k, ans);
k ^= (cnt - ret - 1) & 1, ret = que[ret];
if (Query2(ret, mx, st[tp - 1])) {
if (!Query1(ret, mx)) swap(ret, mx);
ans[ret] = 0;
}
else {
if (Query1(ret, mx)) swap(ret, mx);
ans[ret] = 1, k ^= 1;
}
ans[mx] = k;
}
else {
ans[que[cnt]] = 1, st[tp++] = que[cnt], cnt = 0;
for (i = 0; i < tp; ++i) que[cnt++] = st[i];
Binary(cnt, k, ans);
}
}
}
LOJ #2985. 「WC2019」I 君的商店的更多相关文章
- 【LOJ】#2985. 「WC2019」I 君的商店
LOJ#2985. 「WC2019」I 君的商店 一道很神仙的题啊QAQ 居然是智商题--不是乱搞或者是大数据 我们可以用2N问出一个最大值是1 然后对于任意两个值\(x + y\)和\(a\)比较 ...
- loj2985「WC2019」I 君的商店(二分,思维)
loj2985「WC2019」I 君的商店(二分,思维) loj Luogu 题解时间 真的有点猛的思维题. 首先有一个十分简单的思路: 花费 $ 2N $ 确定一个为 $ 1 $ 的数. 之后每次随 ...
- LOJ#2983. 「WC2019」数树
传送门 抄题解 \(Task0\),随便做一下,设 \(cnt\) 为相同的边的个数,输出 \(y^{n-cnt}\) \(Task1\),给定其中一棵树 设初始答案为 \(y^n\),首先可以发现, ...
- LOJ#2983. 「WC2019」数树 排列组合,生成函数,多项式,FFT
原文链接www.cnblogs.com/zhouzhendong/p/LOJ2983.html 前言 我怎么什么都不会?贺忙指导博客才会做. 题解 我们分三个子问题考虑. 子问题0 将红蓝共有的边连接 ...
- 【LOJ】#2983. 「WC2019」数树
LOJ2983. 「WC2019」数树 task0 有\(i\)条边一样答案就是\(y^{n - i}\) task1 这里有个避免容斥的方法,如果有\(i\)条边重复我们要算的是\(y^{n - i ...
- loj3161「NOI2019」I 君的探险(随机化,整体二分)
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
随机推荐
- 记录php漏洞--宇宙最强语言 PHP 爆出 DoS 漏洞,可以直接灌满 CPU
站长之家(Chinaz.com)5月20日消息 近日,PHP被爆出存在远程DOS漏洞,若黑客利用该漏洞构造PoC发起连接,容易导致目标主机CPU被迅速消耗.此漏洞涉及众多PHP版本,因而影响范围极大 ...
- 编写一致的符合习惯的javascript
本文转自我司的编码规范~ ==== 引言 将要叙述的这些原则旨对javascript开发的风格做指导,并非指定性的规则需绝对服从.如果需要找出一条必须遵循的原则,应该是保持代码的一致性和风格统一. 除 ...
- 【bug】安卓浏览器键盘输入改变弹出层的定位
bug描述 在安卓浏览器中,有一个在页面底部的弹出层表单,样式如下: .popup { position: absolute; bottom: 0; } 当在这个弹出层输入内容,键盘自动弹出,弹出层的 ...
- 转的很好的前端html 内容
HTML 初识 web服务本质 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s ...
- day 17python 面对对象之继承
一:什么面向对象的继承? 比较官方的说法就是: 继承(英语:inheritance)是面向对象软件技术当中的一个概念.如果一个类别A“继承自”另一个类别B,就把这个A称为“B的子类别”,而把B称为“A ...
- Java基础之断言
断言是在Java 1.4中引入的.它能让你验证假设.如果断言失败(即返回false),就会抛出AssertionError(如果启用断言). 什么时候使用断言? 断言不应该用于验证输入数据到一个pub ...
- 如何让IE 低版本下支持 css3属性
依赖源 该文件为 ie-css3.htc (特别提示.htc为二进制文件,只会在ie中识别,让IE浏览器支持CSS3的一些属性) 以下为依赖文件源码 通过源码我们可以看到 该文件在一定程度上 ...
- OpenCV --- 修改图像的对比度、亮度 、RGB转Gray图像、修改图像的尺寸
#include <opencv2/core.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/highgu ...
- hbase搭建web项目 报500错误 HTTP Status 500 - Unable to compile class for JSP
在昨天,用hbase做后台搭建web项目时,前边的进行的非常顺利,当运行时便 报错了,截图如下: 这是直接在jsp中接收参数报的错误,如果在servlet中,同样也是报500的错误,虽然显示的不太一样 ...
- 【BZOJ4184】shallot 线性基
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 此题如果我们不考虑删除元素这一个操作,那么就是一道裸的线性基题. 但是此题会删除 ...