classification_report简介

sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。 
主要参数: 
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。 
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。 
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。 
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。 
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。 
digits:int,输出浮点值的位数.

classification_report用法示例:

from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))

输出:

             precision    recall  f1-score   support

    class 0       0.50      1.00      0.67         1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3 avg / total 0.70 0.60 0.61 5

其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和). 
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1 F1值.

精确度/召回率/F1值

精确度&召回率

精确度/召回率/F1值在<统计学习方法>和周志华的<机器学习>中都有详细介绍,以下参考维基百科中Precision and recall的说明:

如下图所示,假设有若干张图片,其中12张是狗的图片其余是猫的图片.现在利用程序去识别狗的图片,结果在识别出的8张图片中有5张是狗的图片,3张是猫的图片(属于误报).

图中,实心小圆代表狗的图片,虚心小圆代表猫的图片,圆形区域代表识别结果.

则该程序的精度precision=5/8,召回率recall=5/12。

当一个搜索引擎返回30个页面时,只有20页是相关的,而没有返回40个额外的相关页面,其精度为20/30 = 2/3,而其召回率为20/60 = 1/3。在这种情况下,精确度是“搜索结果有多大用处”,而召回是“结果如何完整”。

F1 F1值

F1 F1值是精确度和召回率的调和平均值:

2F1=1P+1R 2F1=1P+1R

F1=2P×RP+R F1=2P×RP+R

精确度和召回率都高时, F1 F1值也会高. F1 F1值在1时达到最佳值(完美的精确度和召回率),最差为0.在二元分类中, F1 F1值是测试准确度的量度。

示例说明:

from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
print(classification_report(y_true, y_pred))

输出:

            precision    recall  f1-score   support

          0       0.50      1.00      0.67         1
1 0.00 0.00 0.00 1
2 1.00 0.67 0.80 3 avg / total 0.70 0.60 0.61 5

其中

真实值 预测值
0 0
1 0
2 2
2 2
2 1

对示例程序中的结果:

  precision    recall  f1-score   support

0       0.50      1.00      0.67         1
1 0.00 0.00 0.00 1
2 1.00 0.67 0.80 3

第一行的计算: 
即0的预测情况:真实值中有1个0,预测值中有2个0,其中1个预测正确,1个预测错误.如图所示:

则, 
 P=12=0.5 P=12=0.5 
 R=11=1 R=11=1 
 F1=212×112+1=0.67 F1=212×112+1=0.67

第二行的计算: 
即1的预测情况:真实值中有1个1,预测值中有1个1,且预测错误.如图所示:

则, 
 P=01=0 P=01=0 
 R=01=0 R=01=0 
 F1=0 F1=0

第三行的计算: 
即2的预测情况:真实值中有3个2,预测值中有2个2,且预测正确.如图所示:

则, 
 P=22=1 P=22=1 
 R=23=0.67 R=23=0.67 
 F1=21×231+23+=0.8

机器学习classification_report方法及precision精确率和recall召回率 说明的更多相关文章

  1. 分类的性能评估:准确率、精确率、Recall召回率、F1、F2

    import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer f ...

  2. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.

    Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息 ...

  3. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..

    转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  4. 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

    准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...

  5. 精确率precession和召回率recall

    假设有两类样本,A类和B类,我们要衡量分类器分类A的能力. 现在将所有样本输入分类器,分类器从中返回了一堆它认为属于A类的样本. 召回率:分类器认为属于A类的样本里,真正是A类的样本数,占样本集中所有 ...

  6. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  7. 准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )----转

    原文:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  8. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  9. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)

    首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...

随机推荐

  1. (二)Mahapps标题栏

    一.MetroWindow 是什么? 1.默认的MetroWindow由以下几部分组成: (1)标题栏的显示/不显示: ShowTitleBar="False" (2)调节柄并不是 ...

  2. PHP 单点登录实现方案

    单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任.单点登录在大型网站里使用得 ...

  3. Django(图书管理系统1)

    day63 内容回顾     1. 单表的增删改查         1. 删和改             1. GET请求 URL传值                 1. 格式            ...

  4. Flask从入门到精通之在视图函数中处理表单

    在新版hello.py 中,视图函数index() 不仅要渲染表单,还要接收表单中的数据.更新后的index() 视图函数如下: @app.route('/') def index(): name = ...

  5. javascript浅拷贝深拷贝理解记录

    javascript的深拷贝和浅拷贝问题几乎是面试必问的问题.好记性不如烂笔头,特此来记录一下自己对深拷贝浅拷贝的理解. 顾名思义,拷贝就是copy复制,在js中可以浅而理解为对一个对象或者数组的复制 ...

  6. this引用逃逸(使用内部类获取未外部类未初始化完的变量),多态父类使用子类未初始化完的变量

    1,this引用逃逸 并发编程实践中,this引用逃逸("this"escape)是指对象还没有构造完成,它的this引用就被发布出去了. 这是危及到线程安全的,因为其他线程有可能 ...

  7. linux 服务器性能监控(一)

    这篇文章主要介绍一些常用的linux服务器性能监控命令,包括命令的常用参数.指标的含义以及一些交互操作. 几个问题 命令本身并不复杂,关键是你对操作系统基础知识的掌握和理解,先来看看下面几个问题: C ...

  8. 【xsy1172】 染色 dp

    题目大意:现有$n$条排成一行的木板,每个木板有一个目标颜色.你每次能将一个区间内的木板分别染成它们的目标颜色,而这次染色的代价为这个区间内不同目标颜色的木板的数量的平方.问将全部木板染成目标颜色的最 ...

  9. (转)mysql原生在线ddl和pt-osc原理解析

    原文:http://blog.csdn.net/zengxuewen2045/article/details/52017247 https://github.com/mysql-inception/i ...

  10. Linux驱动:LCD驱动框架分析

    一直想花时间来整理一下Linux内核LCD驱动,却一直都忙着做其他事情去了,这些天特意抽出时间来整理之前落下的笔记,故事就这样开始了.LCD驱动也是字符设备驱动的一种,框架上相对于字符设备驱动稍微复杂 ...