机器学习classification_report方法及precision精确率和recall召回率 说明
classification_report简介
sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。
主要参数:
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。
digits:int,输出浮点值的位数.
classification_report用法示例:
from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))
输出:
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和).
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1 F1值.
精确度/召回率/F1值
精确度&召回率
精确度/召回率/F1值在<统计学习方法>和周志华的<机器学习>中都有详细介绍,以下参考维基百科中Precision and recall的说明:
如下图所示,假设有若干张图片,其中12张是狗的图片其余是猫的图片.现在利用程序去识别狗的图片,结果在识别出的8张图片中有5张是狗的图片,3张是猫的图片(属于误报).

图中,实心小圆代表狗的图片,虚心小圆代表猫的图片,圆形区域代表识别结果.
则该程序的精度precision=5/8,召回率recall=5/12。
当一个搜索引擎返回30个页面时,只有20页是相关的,而没有返回40个额外的相关页面,其精度为20/30 = 2/3,而其召回率为20/60 = 1/3。在这种情况下,精确度是“搜索结果有多大用处”,而召回是“结果如何完整”。
F1 F1值
F1 F1值是精确度和召回率的调和平均值:
2F1=1P+1R 2F1=1P+1R
F1=2P×RP+R F1=2P×RP+R
精确度和召回率都高时, F1 F1值也会高. F1 F1值在1时达到最佳值(完美的精确度和召回率),最差为0.在二元分类中, F1 F1值是测试准确度的量度。
示例说明:
from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
print(classification_report(y_true, y_pred))
输出:
precision recall f1-score support
0 0.50 1.00 0.67 1
1 0.00 0.00 0.00 1
2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
其中
| 真实值 | 预测值 |
|---|---|
| 0 | 0 |
| 1 | 0 |
| 2 | 2 |
| 2 | 2 |
| 2 | 1 |
对示例程序中的结果:
precision recall f1-score support 0 0.50 1.00 0.67 1
1 0.00 0.00 0.00 1
2 1.00 0.67 0.80 3
第一行的计算:
即0的预测情况:真实值中有1个0,预测值中有2个0,其中1个预测正确,1个预测错误.如图所示:

则,
P=12=0.5 P=12=0.5
R=11=1 R=11=1
F1=212×112+1=0.67 F1=212×112+1=0.67
第二行的计算:
即1的预测情况:真实值中有1个1,预测值中有1个1,且预测错误.如图所示:

则,
P=01=0 P=01=0
R=01=0 R=01=0
F1=0 F1=0
第三行的计算:
即2的预测情况:真实值中有3个2,预测值中有2个2,且预测正确.如图所示:

则,
P=22=1 P=22=1
R=23=0.67 R=23=0.67
F1=21×231+23+=0.8
机器学习classification_report方法及precision精确率和recall召回率 说明的更多相关文章
- 分类的性能评估:准确率、精确率、Recall召回率、F1、F2
import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer f ...
- Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.
Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息 ...
- Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..
转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037 Recall(召回率);Precision(准确率);F1-Meat ...
- 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...
- 精确率precession和召回率recall
假设有两类样本,A类和B类,我们要衡量分类器分类A的能力. 现在将所有样本输入分类器,分类器从中返回了一堆它认为属于A类的样本. 召回率:分类器认为属于A类的样本里,真正是A类的样本数,占样本集中所有 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...
- 准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )----转
原文:http://blog.csdn.net/t710smgtwoshima/article/details/8215037 Recall(召回率);Precision(准确率);F1-Meat ...
- 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R
准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
随机推荐
- c#实现AOP
AOP:面向切面编程,通过预编译方式或运行期动态代理实现程序功能的中统一处理业务逻辑的一种技术,比较常见的场景是:日志记录,错误捕获.性能监控等 AOP详解:https://www.cnblogs.c ...
- c#与c++类型
C/C++ C# HANDLE, LPDWORD, LPVOID, void* IntPtr LPCTSTR, LPCTSTR, LPSTR, char*, const char*, Wchar_t* ...
- Flask系列03--Flask的路由 app.route中的参数, 动态参数路由
Flask–路由 添加路由的两种方式 第一种 @app.route("/my_de") def detail() 第二种(了解即可) app.add_url_rule(" ...
- Mac OS 10.12 - 如何能够像在Windows一样切换中英文输入法和大小写键?
最开始,我切换中英文输入法和大小写键是按照下面博客做到的: http://www.cnblogs.com/sunylat/p/6415563.html 但是当我安装完毕搜狗输入法后,切换中英文输入法和 ...
- 关于popup
p1.html:点击添加按钮,开启窗口,打开p2.html,填写数据后返回p3.html,p3.html将数据回传到p1.html,且关闭自己 p1.html: <!DOCTYPE html ...
- 通过谷歌浏览器,找到页面某个事件属于哪个js文件
在进行web开发中,有时候需要找到某个事件是属于哪个js文件,以便对文件进行修改,进行代码开发 1.打开谷歌浏览器, 打开事件所在页面, 鼠标右键, 点击"检查"项; 2.选中El ...
- [JavaScript] css将footer置于页面最底部
<!-- 父层 --> <div id="wapper"> <!-- 主要内容 --> <div id="main-conten ...
- ansible 的第一次亲密接触
如何添加一台机器 编辑 /etc/ansible/hosts 添加本机的 public ssh key 到目标机器的 authorized_keys 添加本机的 私钥 到 ansible 运行 ans ...
- jdbc连接1(可以注入)
package demo3class; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prepa ...
- POJ 1163
#include<iostream> #include<stdio.h> #include<algorithm> using namespace std; int ...