H. Split Game

time limit per test

1.0 s

memory limit per test

256 MB

input

standard input

output

standard output

For a long time, rich clientele of Binary Casino has been requesting a new way to gamble their money. To fulfill their wishes, the director of Binary Casino decided to introduce a new game called Split Your Tokens.

This game is played only when a customer is about to exit the casino. Instead of exchanging tokens won during his visit, he may take up casino's challenge and bet all of his earned tokens on winning this game. Should the customer lose, all of his tokens are lost in favor of the casino.

When the game starts, the customer splits his tokens into NN piles with not necessarily same amount of tokens in each pile. The customer and the casino then exchange turns ­ in this game we denote the customer as the first player and the casino as the second player. Each player in his turn decides which pile he wants to split and chooses a positive integer KK which is smaller than the size of the selected pile. Then the player splits the selected pile into as many piles of size KK as possible. If any tokens remain, they form another pile on their own. A player loses the game when he can not do any more splitting. The customer (first player) always plays first.

The director of Binary Casino is however not sure, whether this game will be profitable for the casino in the long term. Your task is thus to determine, for a given configuration of piles, which player wins when both players play optimally.

Input

The first line contains one integer NN (1≤N≤20001≤N≤2000), the number of piles. The second line contains a sequence of NN integers PiPi (1≤Pi≤20001≤Pi≤2000), PiPi represents the number of tokens in the ii-th pile.

Output

Output a single line with either "First" or "Second", depending on which player wins the game if both play optimally.

Examples
input
3
1 2 3
output
First
input
3
1 2 2
output
Second

题意概括:

给出 N 堆物品, 两个玩家轮流选择将其中一个大小为 M 的堆 分成最多的 大小为 K (K < 当前选择的堆的大小)的堆,若 M%K 有剩余,则剩余的自成一堆。

最后所有堆大小都为 1 时不可再分,不能再分堆的玩家输。

解题思路:

因为SG函数的作用就是把博弈的状态当成一个点,然后形成一张 有向图,后继状态也就是后继结点,通过转移图上结点的状态最后求的起始点的结果。

以往 都是选择某一堆 取走若干 然后留下一堆,所以 结点的后继结点就对应剩下的那个状态。也就是说 把每一堆单独作为一个 NIM游戏,最后再考虑所有堆最后异或的结果。

不过 这里是选择某一堆 然后分成若干个小堆,就相当于又变成了一个 NIM游戏,不过考虑到分成的若干小堆 有相同的 和 不同的两部分,相同的直接判奇偶即可,如果有不同的(即分剩下的)再异或上这种状态即可。也就是先把每一堆作为一个 NIM 游戏,每分一次就又玩一次 NIM 游戏。

AC code:

 #include <bits/stdc++.h>
#define inc(i, j, k) for(int i = j; i <= k; i++)
#define rep(i, j, k) for(int i = j; i < k; i++)
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
#define INF 0x3f3f3f3f
#define LL long long
#define MEM(i, j) memset(i, j, sizeof(i));
#define gcd(i, j) __gcd(i, j)
using namespace std;
const int MAXN = 2e5+;
const int MM = 2e3+;
int sg[MAXN];
int vis[MAXN]; void getsg()
{
int cnt, res;
sg[] = ;
MEM(vis, -);
inc(i, , MM){
rep(j, , i){
cnt = i/j;
res = i%j;
if(cnt%) vis[sg[res]^sg[j]] = i;
else vis[sg[res]] = i;
}
int k = ;
while(vis[k] == i && k < MM) k++;
sg[i] = k;
}
} int main()
{
getsg();
int N;
scanf("%d", &N);
int ans = , tp;
while(N--){
scanf("%d", &tp);
ans^=sg[tp];
}
if(ans) puts("First");
else puts("Second");
return ;
}

2018 - 2019 CTU Open Contest H. Split Game 【SG函数】的更多相关文章

  1. 2018 - 2019 CTU Open Contest E. Locker Room 【后缀数组】

    任意门:http://codeforces.com/gym/101954/problem/E E. Locker Room time limit per test 2.0 s memory limit ...

  2. COCI 2018/2019 CONTEST #2 T4 Maja T5Sunčanje Solution

    COCI 2018/2019 CONTEST #2 T4 T5 Solution abstract 花式暴力 #2 T5 Sunčanje 题意 按顺序给你1e5个长方形(左下角坐标&& ...

  3. 20172328 2018—2019《Java软件结构与数据结构》第二周学习总结

    20172328 2018-2019<Java软件结构与数据结构>第二周学习总结 概述 Generalization 本周学习了第三章集合概述--栈和第四章链式结构--栈.主要讨论了集合以 ...

  4. 2018 German Collegiate Programming Contest (GCPC 18)

    2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...

  5. (寒假GYM开黑)2018 German Collegiate Programming Contest (GCPC 18)

    layout: post title: 2018 German Collegiate Programming Contest (GCPC 18) author: "luowentaoaa&q ...

  6. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  7. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  8. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

随机推荐

  1. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  2. 12:计算2的N次方

    12:计算2的N次方 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 任意给定一个正整数N(N<=100),计算2的n次方的值. 输入 输入一个正整数N ...

  3. springboot中使用druid和监控配置

    如果想要监控自己的项目的访问情况及查看配置信息,druid是一个很好的选择,可能你会问druid是什么?有什么用?优点是什么? Druid简介 Druid是阿里巴巴开源的数据库连接池,号称是Java语 ...

  4. 纯web实现游记类手机端应用

    初衷 当初的一个学习框架项目,采用sui框架实现的一套手机端页面.今天清理github的时候重新整理了一下,因为设计的确实不错嘛,拿出来大家一起学习...哈哈 说明 采用sui框架 纯html/css ...

  5. JS判断客户端是否是iOS或者Android端

    通过判断浏览器的userAgent,用正则来判断手机是否是 IOS 和 Android 客户端. 代码如下: (function(){ var u = navigator.userAgent; var ...

  6. Centos7配置

    1.静态ip配置 1.1  cd  /etc/sysconfig/network-scripts/ 1.2 vim ifcfg-ens33 (可通过ls查看  一般为第一个) (网关DNS1可以通过V ...

  7. 前端模块化方案全解(CommonJS/AMD/CMD/ES6)

    模块化的开发方式可以提高代码复用率,方便进行代码的管理.通常一个文件就是一个模块,有自己的作用域,只向外暴露特定的变量和函数.目前流行的js模块化规范有CommonJS.AMD.CMD以及ES6的模块 ...

  8. Pig模式

    Pig中的模式可以是用户显示声明的,也可以是Pig通过用户的使用方式猜测的. Pig对模式的认知在Pig Latin脚本执行的不同阶段可能是不同的.     下面的语句,用户显示声明了模式:3个字段, ...

  9. 使用cancelBubble竟然可以阻止所有浏览器的冒泡?

    以前一直以为cancelBubble是IE8及以下的专属,今天做一个测试的时候意外发现了所有浏览器都支持,便提出来希望有哪位解释下. 1.使用原生js在FF下和chrome下两种方法都可以阻止冒泡 d ...

  10. zabbix系列之五——安装后配置一

    https://www.zabbix.com/documentation/3.4/manual/appliance Configuration 1Hosts and host groups Overv ...