洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告
P3698 [CQOI2017]小Q的棋盘
题目描述
小 Q 正在设计一种棋类游戏。
在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中。某些格点之间有连线,棋子只能在有连线的格点之间移动。整个棋盘上共有 V 个格点,编号为0,1,2 … , V− 1,它们是连通的,也就是说棋子从任意格点出发,总能到达所有的格点。小 Q 在设计棋盘时,还保证棋子从一个格点移动到另外任一格点的路径是唯一的。
小 Q 现在想知道,当棋子从格点 0 出发,移动 N 步最多能经过多少格点。格点可以重复经过多次,但不重复计数。
输入输出格式
输入格式:
第一行包含2个正整数\(V\), \(N\),其中\(V\)表示格点总数,\(N\)表示移动步数。
接下来\(V−1\)行,每行两个数\(a_i,b_i\),表示编号为\(a_i,b_i\)的两个格点之间有连线。
输出格式:
输出一行一个整数,表示最多经过的格点数量。
说明:
对于 100%的测试点,\(N,V ≤ 100, 0 ≤a_i,b_i< V\)
我贪心算是废了
这个题真的不难想orz...
首先读题,这是一颗树。
然后发现最后一次走可以不回去,最后一次肯定走最长的链
然后其他的点多一次返回的开销
Code:
#include <cstdio>
const int N=102;
int min(int x,int y){return x<y?x:y;}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v;Next[cnt]=head[u];head[u]=cnt;
}
int mx=0,used[N],n,m;
void dfs(int now,int dep)
{
used[now]=1;
mx=mx>dep?mx:dep;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(!used[v])
dfs(v,dep+1);
}
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs(0,1);
if(m<mx-1)
printf("%d\n",m+1);
else
printf("%d\n",min(n,mx+(m-mx+1)/2));
return 0;
}
2018.7.11
洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告的更多相关文章
- 洛谷P3698 [CQOI2017]小Q的棋盘
传送门 考虑一个贪心,先在根节点周围转一圈,然后再往下走最长链肯定是最优的 然后设最长链的长度为$d$,如果$m\leq d$,那么答案为$m+1$ 否则的话还剩下$m-d+1$步,又得保证能走回来, ...
- BZOJ4813或洛谷3698 [CQOI2017]小Q的棋盘
BZOJ原题链接 洛谷原题链接 贪心或树形\(DP\)都可做,但显然\(DP\)式子不好推(因为我太菜了),所以我选择贪心. 很显然从根出发主干走最长链是最优的,而剩下的点每个都需要走两步,所以用除去 ...
- [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格
Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...
- 洛谷 P3700 - [CQOI2017]小Q的表格(找性质+数论)
洛谷题面传送门 又是一道需要一些观察的数论 hot tea-- 注意到题目中 \(b·f(a,a+b)=(a+b)·f(a,b)\) 这个柿子长得有点像求解 \(\gcd\) 的辗转相除法,因此考虑从 ...
- P3698 [CQOI2017]小Q的棋盘
题目链接 题意分析 首先 我们肯定会贪心的走从根节点到叶子结点最长的一条链 首先没有过剩的就好办了 但是有的话 我们就一边往下走 一边走分支 分支上每一个点平均走过两次 所以我们把剩下的除以\(2\) ...
- 洛谷 P4279 [SHOI2008]小约翰的游戏 解题报告
P4279 [SHOI2008]小约翰的游戏 题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有\(n\)堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子 ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs
BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
随机推荐
- Hyperledger Fabric CA User’s Guide——开始(三)
Fabric CA User’s Guide——开始 先决条件 安装Go 1.9+ 设置正确的GOPATH环境变量 安装了libtool和libtdhl-dev包 下面是在Ubuntu上安装libto ...
- XSS-DVWA
1.反射型 LOW: 没有过滤,直接键入PAYLOAD 查看源码 这里没有任何过滤,使用htmlspecialchars()过滤 结果不弹窗 MEDIUM: LOW等级的方法不奏效了 观察输出可能是过 ...
- split命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/lkforce/article/details/71547313 Linux中的文件,特别是日志文件,特别大了不好打开,可以 ...
- flume handler
1.classpath classpath中需要这两项:Flume Agent configuration file and the second are the Flume client jars ...
- Virtual DOM的简单实现
了解React的同学都知道,React提供了一个高效的视图更新机制:Virtual DOM,因为DOM天生就慢,所以操作DOM的时候要小心翼翼,稍微改动就会触发重绘重排,大量消耗性能. 1.Virtu ...
- Scrum立会报告+燃尽图(Final阶段第六次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2485 项目地址:https://coding.net/u/wuyy694 ...
- Beta发布文案+美工
团队名称:探路者 1蔺依铭:http://www.cnblogs.com/linym762/(组长) 2张恩聚:http://www.cnblogs.com/zej87/ 3米赫:http://www ...
- No.1100_第九次团队会议
在今天项目有了新的突破,大家的情绪明显高涨了一些,一改往日的颓丧.但是仍然还有很多功能没有完善,于是大家相互交流了一下自己的进度,列出还没有完善的部分,有些困难的部分一时解决不了,我们决定多人合作来解 ...
- 20135337朱荟潼Java实验报告二
20135337朱荟潼 实验二 Java面向对象程序设计 一.实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L ...
- 20172311『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结
20172311『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结 结对伙伴 学号 :20172307 姓名 :黄宇瑭 伙伴第一周博客地址 对结对伙伴的评价:黄宇瑭同学的优势在于能够想出一 ...