Description

小强要在N个孤立的星球上建立起一套通信系统。这套通信系统就是连接N个点的一个树。

这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够

联通的树上路过它的简单路径的数量。

例如,在上图中,现在一共有了5条边。其中,(3,8)这条边的负载是6,因

为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8)。

现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的

询问。

Input

第一行包含两个整数N,Q,表示星球的数量和操作的数量。星球从1开始编号。

接下来的Q行,每行是如下两种格式之一:

A x y 表示在x和y之间连一条边。保证之前x和y是不联通的。

Q x y 表示询问(x,y)这条边上的负载。保证x和y之间有一条边。

1≤N,Q≤100000

Output

对每个查询操作,输出被查询的边的负载。

Sample Input

8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8

Sample Output

6

Solution

LCT的特殊操作——维护子树信息

开个额外的Isize,记录节点虚子树的信息和

然后就裸的题目了

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=100000+10;
int n,q;
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],rev[MAXN],size[MAXN],Isize[MAXN],stack[MAXN],cnt;
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
size[x]=size[lc(x)]+size[rc(x)]+Isize[x]+1;
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])
{
splay(x);
Isize[x]+=size[rc(x)];
rc(x)=y;
Isize[x]-=size[rc(x)];
pushup(x);
}
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);access(y);splay(y);
fa[x]=y;
Isize[y]+=size[x];
pushup(y);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(q);
while(q--)
{
char opt[1];int x,y;
scanf("%s",opt);read(x);read(y);
if(opt[0]=='A')T.link(x,y);
if(opt[0]=='Q')
{
T.split(x,y);
write(1ll*(T.size[y]-T.size[x])*T.size[x],'\n');
}
}
return 0;
}

【刷题】BZOJ 4530 [Bjoi2014]大融合的更多相关文章

  1. BZOJ:4530: [Bjoi2014]大融合

    4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio ...

  2. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

  3. bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...

  4. bzoj 4530: [Bjoi2014]大融合【LCT】

    新姿势,一般来讲LCT只能维护splay重边里的数据,而这里要求维护整颗子树的size 多维护一个sq表示当前点轻儿子的size和,si表示包括轻重边的整颗子树的大小 然后需要改sq的地方是link和 ...

  5. 【BZOJ】4530: [Bjoi2014]大融合

    [题意]给定n个点的树,从无到有加边,过程中动态询问当前图某条边两端连通点数的乘积,n<=10^5. [算法]线段树合并+并查集 (||LCT(LCT维护子树信息 LCT维护子树信息(+启发式合 ...

  6. [BJOI2014]大融合(Link Cut Tree)

    [BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...

  7. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  8. BZOJ_4530_[Bjoi2014]大融合_LCT

    BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个 ...

  9. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

随机推荐

  1. Quartz.net 定时任务在IIS中没有定时执行

    问题:Quartz.net 定时任务在项目部署到IIS中发现没有定时执行 解决方案: 1.在服务器上装一个360(自带自动刷新功能),在工具——>自动刷新——>自动刷新勾上 然后再设置一下 ...

  2. 配置独立于系统的PYTHON环境

    配置独立于系统的PYTHON环境 python 当前用户包 一种解决方案是在利用本机的python环境的基础上,将python的包安装在当前user的.local文件夹下 一共有两种方式来实现pip的 ...

  3. NO--19 微信小程序之scroll-view选项卡与跳转(二)

    本篇为大家介绍为何我们在最后做交互的时候,并没有使用上一篇讲的选项卡的效果.   scroll-view与跳转.gif (如无法查看图片,还请翻看上一篇!) 大家注意看,在我点击跳转后,首先能看到的是 ...

  4. DNS分离解析IPV6与IPV4用户

    IPV6改造中经常会遇到,网站使用了CDN,但是CDN厂商还不支持IPV6的情况,而AAAA.A.CNAME记录互相冲突,想实现IPV6用户得到AAAA记录,IPV4用户得到CNAME记录的需求. 解 ...

  5. Datasets

    STL-10 https://cs.stanford.edu/~acoates/stl10/ CIFAR-10 and CIFAR-100 https://www.cs.toronto.edu/~kr ...

  6. 图片人脸检测(OpenCV版)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多 ...

  7. 【Alpha】阶段第十次Scrum Meeting

    [Alpha]阶段第十次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 登出接口 编写后端说明文档 赵智源 编写脚本实现测试的持续集成 前测试点页面跳转逻辑测试 ...

  8. java实验2实验报告(20135232王玥)

    实验二 Java面向对象程序设计 一.实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原则 5. 了解 ...

  9. 软件项目的开发之svn的使用

    Svn简介 SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平台的软件,支持大多数常见的操作系统.作为一个开源的版本控制系统,Subversion管理着随时间改变的数据.这 ...

  10. 生命周期事件和 Global.asax 文件

    文章:IIS 5.0 和 6.0 的 ASP.NET 应用程序生命周期概述 该文章有介绍Application_Start方法