【BZOJ4710】[JSOI2011]分特产(容斥)
【BZOJ4710】分特产(容斥)
题面
题解
比较简单吧。。。
设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数。
\(f[i]=\prod_{j=1}^m C_{m+i-1}^{i-1}\)
现在要算的是恰好有\(n\)个人拿到东西的方案数。
\(ans=\sum_{i=1}^n (-1)^{n-i}C_n^if[i]\)
没了。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX],n,m,ans;
int jc[MAX<<1],jv[MAX<<1],inv[MAX<<1];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<MAX<<1;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<MAX<<1;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX<<1;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
n=read();m=read();
for(int i=1;i<=n;++i)f[i]=1;
for(int i=1;i<=m;++i)
for(int j=1,x=read();j<=n;++j)
f[j]=1ll*f[j]*C(j+x-1,j-1)%MOD;
for(int i=n,d=1;i;--i,d=MOD-d)ans=(ans+1ll*d*f[i]%MOD*C(n,i)%MOD)%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ4710】[JSOI2011]分特产(容斥)的更多相关文章
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ 4710: [Jsoi2011]分特产(容斥)
传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
随机推荐
- lua中table的常用方法
转载:https://blog.csdn.net/Fenglele_Fans/article/details/83627021 1:table.sort() language = {"lua ...
- Unity优化方向——优化Unity游戏中的垃圾回收(译)
介绍 当我们的游戏运行时,它使用内存来存储数据.当不再需要该数据时,存储该数据的内存将被释放,以便可以重用.垃圾是用来存储数据但不再使用的内存的术语.垃圾回收是该内存再次可用以进行重用的进程的名称. ...
- 百度地图在移动端下click无效的解决方案
这是由于百度地图在移动端屏蔽了click事件,在网上找到一种方法,利用touchClick方法来模拟click事件,代码如下(需要JQ插件): //给jquery添加touchClick方法 (fun ...
- MD5加密简单使用
MD5加密简单使用规则 先写一个加密的工具类吧! public class MD5Util { public static String encoderPassword(String s) throw ...
- CentOS查看一共安装了多少软件包,是那些软件包
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/48292853 一.如何得知共安装了多少个软件包 [root@localhost ~ ...
- vue 子组件传值给父组件
子组件通过this.$emit("event",[args,....]),传值给父组件 HTML部分: <div id="app"> <tmp ...
- docker 从本地拷贝文件
1.找到docker的ID全称 docker inspect -f '{{.Id}}' docker_name 2.执行拷贝命令 docker cp 本地文件路径 ID全称:docker路径 3.如果 ...
- 高可用Kubernetes集群-16. ansible快速部署
说明 本文档指导采用二进制包的方式快速部署高可用kubernetes集群. 脚本托管:k8s-ansible(持续更新) 参考:高可用kubernetes集群 组件版本 组件 版本 备注 centos ...
- 高可用OpenStack(Queen版)集群-12.Cinder计算节点
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- hadoop之计数器和管道的mrunit测试
引言 hadoop的调试真心让人灰常恼火,而且从企业实际出发,集群的资源是有限的,不可能在集群上跑一遍又一遍根据log去调试代码,那么使用MRUnit编写测试单元,显得尤为重要.MRUnit中的Map ...