【BZOJ4710】[JSOI2011]分特产(容斥)
【BZOJ4710】分特产(容斥)
题面
题解
比较简单吧。。。
设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数。
\(f[i]=\prod_{j=1}^m C_{m+i-1}^{i-1}\)
现在要算的是恰好有\(n\)个人拿到东西的方案数。
\(ans=\sum_{i=1}^n (-1)^{n-i}C_n^if[i]\)
没了。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX],n,m,ans;
int jc[MAX<<1],jv[MAX<<1],inv[MAX<<1];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<MAX<<1;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<MAX<<1;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX<<1;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
n=read();m=read();
for(int i=1;i<=n;++i)f[i]=1;
for(int i=1;i<=m;++i)
for(int j=1,x=read();j<=n;++j)
f[j]=1ll*f[j]*C(j+x-1,j-1)%MOD;
for(int i=n,d=1;i;--i,d=MOD-d)ans=(ans+1ll*d*f[i]%MOD*C(n,i)%MOD)%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ4710】[JSOI2011]分特产(容斥)的更多相关文章
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ 4710: [Jsoi2011]分特产(容斥)
传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
随机推荐
- 扩展Unity Inspector
Unity Editor下,可以在不改变原有布局的情况下扩展Inspect的界面. 在继承了Editor的类中,有两种实现方式: using UnityEditor; [CustomEditor(ty ...
- 零基础学python之函数与模块(附详细的代码和安装发布文件过程)
代码重用——函数与模块 摘要:构建函数,创建模块,安装发布文件,安装pytest和PEP 8插件,确认PEP8兼容性以及纠错 重用代码是构建一个可维护系统的关键. 代码组是Python中对块的叫法. ...
- 通过python将xml文件转换成html文件
#数据类型的转换 def main(): maxwidth = 100 #用于规范字段的长度 print_start() count=0 while True: ...
- IP地址相关知识
IP地址基本概念 ...
- Maven ResourceBundle.getBundle读取Properties异常MissingResourceException: Can't find bundlei解决方法
参考:https://blog.csdn.net/thousa_ho/article/details/72817616 问题描述 ResourceBundle读取properties配置文件提示 Mi ...
- 【CentOS 7】nginx配置web服务器
1,安装过程 [root@VM_1_14_centos ~]# cd /data/ [root@VM_1_14_centos data]# wget http://nginx.org/download ...
- Navicat新建查询,系统找不到指定路径 独家解决办法
Navicat新建查询系统找不到指定路径,很多人用了网上流行的那些解决办法,还是无法解决.比如: https://jingyan.baidu.com/article/86112f1387a713273 ...
- 允许使用root远程ssh登录(Ubuntu 16.04)
今天装了ubuntu16和17,发现还是ubuntu16看着顺眼,所以以后决定用ubuntu16, 然后想换语言发现更新失败,所以想换成中国的源,但是vm里面复制粘贴不了,所以想用secureCRT连 ...
- Spring的Controller映射规则
URL映射 1) 一般格式@RequestMapping(value=“/test”) 2) 可以使用模板模式映射,@RequestMapping(value=“/test/{userId}”) 3) ...
- 实验三 Java猜数字游戏开发
课程:Java实验 班级:201352 姓名:程涵 学号:20135210 成绩: 指导教师:娄佳鹏 实验日期:15.06.03 实验密级: ...