【BZOJ4710】分特产(容斥)

题面

BZOJ

题解

比较简单吧。。。

设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数。

\(f[i]=\prod_{j=1}^m C_{m+i-1}^{i-1}\)

现在要算的是恰好有\(n\)个人拿到东西的方案数。

\(ans=\sum_{i=1}^n (-1)^{n-i}C_n^if[i]\)

没了。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX],n,m,ans;
int jc[MAX<<1],jv[MAX<<1],inv[MAX<<1];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<MAX<<1;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<MAX<<1;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX<<1;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
n=read();m=read();
for(int i=1;i<=n;++i)f[i]=1;
for(int i=1;i<=m;++i)
for(int j=1,x=read();j<=n;++j)
f[j]=1ll*f[j]*C(j+x-1,j-1)%MOD;
for(int i=n,d=1;i;--i,d=MOD-d)ans=(ans+1ll*d*f[i]%MOD*C(n,i)%MOD)%MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ4710】[JSOI2011]分特产(容斥)的更多相关文章

  1. BZOJ4710 [Jsoi2011]分特产 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...

  2. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

  3. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  4. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  5. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  6. BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  7. Bzoj4710 [Jsoi2011]分特产

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 96  Solved: 62[Submit][Status][Discuss] Description ...

  8. BZOJ4710 JSOI2011分特产(容斥原理+组合数学)

    显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...

  9. 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)

    传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai​,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...

  10. bzoj千题计划273:bzoj4710: [Jsoi2011]分特产

    http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...

随机推荐

  1. 扩展Unity Inspector

    Unity Editor下,可以在不改变原有布局的情况下扩展Inspect的界面. 在继承了Editor的类中,有两种实现方式: using UnityEditor; [CustomEditor(ty ...

  2. 零基础学python之函数与模块(附详细的代码和安装发布文件过程)

    代码重用——函数与模块 摘要:构建函数,创建模块,安装发布文件,安装pytest和PEP 8插件,确认PEP8兼容性以及纠错 重用代码是构建一个可维护系统的关键. 代码组是Python中对块的叫法. ...

  3. 通过python将xml文件转换成html文件

    #数据类型的转换 def main():    maxwidth = 100  #用于规范字段的长度    print_start()    count=0    while True:        ...

  4. IP地址相关知识

    IP地址基本概念                                                                                            ...

  5. Maven ResourceBundle.getBundle读取Properties异常MissingResourceException: Can't find bundlei解决方法

    参考:https://blog.csdn.net/thousa_ho/article/details/72817616 问题描述 ResourceBundle读取properties配置文件提示 Mi ...

  6. 【CentOS 7】nginx配置web服务器

    1,安装过程 [root@VM_1_14_centos ~]# cd /data/ [root@VM_1_14_centos data]# wget http://nginx.org/download ...

  7. Navicat新建查询,系统找不到指定路径 独家解决办法

    Navicat新建查询系统找不到指定路径,很多人用了网上流行的那些解决办法,还是无法解决.比如: https://jingyan.baidu.com/article/86112f1387a713273 ...

  8. 允许使用root远程ssh登录(Ubuntu 16.04)

    今天装了ubuntu16和17,发现还是ubuntu16看着顺眼,所以以后决定用ubuntu16, 然后想换语言发现更新失败,所以想换成中国的源,但是vm里面复制粘贴不了,所以想用secureCRT连 ...

  9. Spring的Controller映射规则

    URL映射 1) 一般格式@RequestMapping(value=“/test”) 2) 可以使用模板模式映射,@RequestMapping(value=“/test/{userId}”) 3) ...

  10. 实验三 Java猜数字游戏开发

    课程:Java实验   班级:201352     姓名:程涵  学号:20135210 成绩:             指导教师:娄佳鹏   实验日期:15.06.03 实验密级:         ...