题目链接

BZOJ5305

题解

妙啊

要求的是所有可能的树形的所有点对距离和

直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献

考虑一条边会产生多少贡献

我们枚举\(i\)节点的父亲边

首先我们认识到一点,按照题中所给的生成树的方式,\(n\)个节点的树有\(n!\)种形态

我们枚举了边,贡献为边两侧点数之积,所以再枚举一下\(i\)子树大小\(siz\)

那么贡献为

\[siz(n - siz)
\]

\(i\)子树的方案数为

\[{n - i \choose siz - 1}siz!
\]

\(i\)之外的树的方案数为

\[i!(i - 1)^{\overline{n - i - siz + 1}} = i(i - 1)(n - siz - 1)!
\]

所以最后的答案为

\[\sum\limits_{i = 2}^{n}\sum\limits_{siz = 1}^{n - i + 1}{n - i \choose siz - 1}siz!siz(n - siz)i(i - 1)(n - siz - 1)!
\]

复杂度\(O(n^2)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
int n,P,C[maxn][maxn],fac[maxn],ans;
int main(){
n = read(); P = read();
for (int i = 0; i <= n; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= (i >> 1); j++)
C[i][j] = C[i][i - j] = (C[i - 1][j] + C[i - 1][j - 1]) % P;
}
fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % P;
for (int i = 2; i <= n; i++)
for (int j = 1; j <= n - i + 1; j++)
ans = (ans + 1ll * C[n - i][j - 1] * fac[j] % P * (n - j) % P * j % P * i % P * (i - 1) % P * fac[n - j - 1] % P) % P;
printf("%d\n",ans);
return 0;
}

BZOJ5305 [Haoi2018]苹果树 【组合数学】的更多相关文章

  1. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  2. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  3. BZOJ5305 HAOI2018苹果树(概率期望+动态规划)

    每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...

  4. [BZOJ5305][HAOI2018]苹果树(DP)

    首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...

  5. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  6. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  7. BZOJ5305: [HAOI2018]苹果树

    传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...

  8. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  9. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

随机推荐

  1. Java 集合基础知识 List/Set/Map

    一.List Set 区别 List 有序,可重复: Set 无序,不重复: 二.List Set 实现类间区别及原理 Arraylist 底层实现使用Object[],数组查询效率高 扩容机制    ...

  2. 带你轻而易举的学习python——八皇后问题

    首先我们来看一下这个著名的八皇后问题 八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 在这个问题提出之后人们又将 ...

  3. AJAX请求中出现OPTIONS请求

    背景 有一个前后端分离的VUE项目来发送ajax请求, 查看Nginx日志或使用Chrome Dev Tools查看请求发送情况时, 会看到每次调后台API的请求之前, 都会发送一个OPTIONS请求 ...

  4. Kubernetes探索学习004--深入Kubernetes的Pod

    深入研究学习Pod 首先需要认识到Pod才是Kubernetes项目中最小的编排单位原子单位,凡是涉及到调度,网络,存储层面的,基本上都是Pod级别的!官方是用这样的语言来描述的: A Pod is ...

  5. 20162328蔡文琛 week11 大二

    20162328 2017-2018-1 <程序设计与数据结构>第十一周学习总结 教材学习内容总结 在无向图中,表示边的顶点对是无序的. 如果图中的两个顶点之间有边链接,则称它们是领接的. ...

  6. java_web连接SQL_server详细步骤

    (1).我用的是Myeclipse,可以直接将sqljdbc4.jar拷到项目文件 (2).点开SQL Server配置管理器 选中SQL Server2008网络配置下的SQLEXPRESS的协议, ...

  7. Leetcode题库——26.删除排序数组中的重复项

    @author: ZZQ @software: PyCharm @file: removeDuplicates.py @time: 2018/9/23 13:51 要求: 给定一个排序数组,你需要在原 ...

  8. 29_Java_数据库_第29天(JDBC、DBUtils)_讲义

    今日内容介绍 1.JDBC 2.DBUtils 01JDBC概念和数据库驱动程序 * A: JDBC概念和数据库驱动程序 * a: JDBC概述 * JDBC(Java Data Base Conne ...

  9. 使用node-webkit包装浏览器

    node-webkit简称nwjs:开源地址 https://github.com/nwjs/nw.js 参考博客 https://www.cnblogs.com/soaringEveryday/p/ ...

  10. error_reporting 报错

    <?php // 关闭所有PHP错误报告 error_reporting(0); // 报告简单的运行错误 error_reporting(E_ERROR | E_WARNING | E_PAR ...