BZOJ5305 [Haoi2018]苹果树 【组合数学】
题目链接
题解
妙啊
要求的是所有可能的树形的所有点对距离和
直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献
考虑一条边会产生多少贡献
我们枚举\(i\)节点的父亲边
首先我们认识到一点,按照题中所给的生成树的方式,\(n\)个节点的树有\(n!\)种形态
我们枚举了边,贡献为边两侧点数之积,所以再枚举一下\(i\)子树大小\(siz\)
那么贡献为
\]
\(i\)子树的方案数为
\]
\(i\)之外的树的方案数为
\]
所以最后的答案为
\]
复杂度\(O(n^2)\)
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
int n,P,C[maxn][maxn],fac[maxn],ans;
int main(){
n = read(); P = read();
for (int i = 0; i <= n; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= (i >> 1); j++)
C[i][j] = C[i][i - j] = (C[i - 1][j] + C[i - 1][j - 1]) % P;
}
fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % P;
for (int i = 2; i <= n; i++)
for (int j = 1; j <= n - i + 1; j++)
ans = (ans + 1ll * C[n - i][j - 1] * fac[j] % P * (n - j) % P * j % P * i % P * (i - 1) % P * fac[n - j - 1] % P) % P;
printf("%d\n",ans);
return 0;
}
BZOJ5305 [Haoi2018]苹果树 【组合数学】的更多相关文章
- [BZOJ5305][HAOI2018]苹果树 组合数学
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...
- BZOJ5305 HAOI2018苹果树(概率期望+动态规划)
每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...
- [BZOJ5305][HAOI2018]苹果树(DP)
首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...
- [BZOJ5305][Haoi2018]苹果树 组合数
题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...
- [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数
Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...
- BZOJ5305: [HAOI2018]苹果树
传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- [洛谷P4492] [HAOI2018]苹果树
洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...
随机推荐
- Hbase基本用法
hbase 一些重要的解释(杂) 访问habse三种方式 访问hbase table中的行,只有三种方式: 1 通过单个row key访问 2 通过row key的range 3 全表扫描 Row k ...
- 环境变量的配置-java-JMETER - 【Linux】
rz上传 lz下载 步骤: . Linux下首先安装Jdk: . 下载apache-jmeter-4.0.tgz,复制到Linux系统中的/opt目录下: . 解压apache-jmeter-4.0. ...
- 【坚持】Selenium+Python学习之从读懂代码开始 DAY6
2018/05/23 Python内置的@property装饰器 [@property](https://www.programiz.com/python-programming/property) ...
- 关于MySql数据库主键及索引的区别
一.什么是索引?索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里 ...
- webbrowser 模块的 open()方法
webbrowser 模块的 open()函数可以启动一个新浏览器,打开指定的 URL.在交 互式环境中输入以下代码: >>> import webbrowser >>& ...
- layui数据表格使用(一:基础篇,数据展示、分页组件、表格内嵌表单和图片)
表格展示神器之一:layui表格 前言:在写后台管理系统中使用最多的就是表格数据展示了,使用表格组件能提高大量的开发效率,目前主流的数据表格组件有bootstrap table.layui table ...
- Linux(Contos7.5)环境搭建之Gitblit安装(三)
1.yum安装git(这一步暂时不清楚是否必要,因为在window上搭建并不需要)
- 2017年软件工程第十二次作业-PSP总结报告
回顾1 1.回想一下你曾经对计算机专业的畅想 当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么? 你认为过去接触到的课程是否符合你对计算机专业的期待,为什么?经过一个学期 ...
- Scrum Meeting 9 -2014.11.15
项目开发测试要进入尾声了.大家加把劲,这周末能整合完成就最好了. 服务器方面已经能运行我们的程序了.还需要研究如何与其他两小组整合. Member Today’s task Next task 林豪森 ...
- JAVA第一次实验 ——实验楼
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1352 姓名:潘俊洋 学号:20135230 成绩: 指导教师:娄嘉鹏 ...