晓萌希望将1到N的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等。例如,对于N=3,对应的集合{1,2,3}能被划分成{3} 和 {1,2}两个子集合.

这两个子集合中元素分别的和是相等的。

对于N=3,我们只有一种划分方法,而对于N=7时,我们将有4种划分的方案。

输入包括一行,仅一个整数,表示N的值(1≤N≤39)。

输出包括一行,仅一个整数,晓萌可以划分对应N的集合的方案的个数。当没发划分时,输出0。

样例输入

7

样例输出

4

AC代码

#include<iostream>

using namespace std;

long long DP[][];

int main()
{
int n;
cin >> n;
int s = (+n)*n/; if(s% == )
{
cout << ;
return ;
} int ss = s / ; DP[][] = ; for(int i = ; i <= ss; i++)
{
DP[][i] = ;
} for(int i = ; i <= n; i++)
{
for(int h = ; h <= ss; h++)
{
if(h < i)
DP[i][h] = DP[i-][h];
else
{
DP[i][h] = DP[i-][h] + DP[i-][h-i];
}
}
} cout << DP[n][ss]/ << endl; return ;
}

解析

等和的分隔子集(DP)的更多相关文章

  1. [BZOJ4416][SHOI2013]阶乘字符串(子集DP)

    怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...

  2. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

  3. hdu 5823 color II —— 子集DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...

  4. BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)

    明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...

  5. BZOJ 2560(子集DP+容斥原理)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 497[Submit][Status][Discuss] ...

  6. 动态规划---等和的分隔子集(计蒜课)、从一个小白的角度剖析DP问题

    自己还是太菜了,算法还是很难...这么简单的题目竟然花费了我很多时间...在这里我用一个小白的角度剖析一下这道题目. 晓萌希望将1到N的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等 ...

  7. 等和的分隔子集(dp)

    晓萌希望将 1 到 N 的连续整数组成的集合划分成两个子集合,且保证每个集合的数字和是相等. 例如,对于 N = 3,对应的集合 1, 2, 3 能被划分成3和1,2两个子集合. 这两个子集合中元素分 ...

  8. bzoj2560串珠子(子集dp)

    铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...

  9. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

随机推荐

  1. 如果有多个集合的迭代处理情况【使用MAP】

    在SQL开发过程中,动态构建In集合条件查询是比较常见的用法,在Mybatis中提供了foreach功能,该功能比较强大,它允许你指定一个集合,声明集合项和索引变量,它们可以用在元素体内.它也允许你指 ...

  2. [转载]PCI/PCIe基础——配置空间

    转载地址:http://blog.csdn.net/jiangwei0512/article/details/51603525 PCI/PCIe设备有自己的独立地址空间,这部分空间会映射到整个系统的地 ...

  3. DotNetBar笔记

    1.TextBoxDropDown  这是一个绝对TMD坑爹的狗屁玩意儿.键盘的四个事件全部不好使.但是这个玩意儿有个好处就是他的DropDownControl属性可以用来制作ComboGrid. 然 ...

  4. java代码异常处理篇-----循环

    总结:注意一个方法:nextLine();它表示:执行当前行,返回跳过的输入信息. package com.da; import java.util.InputMismatchException; i ...

  5. POJ 3728 The merchant(LCA+DP)

    The merchant Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  6. Java学习之系统高可用性渲染接口日志自动服务降级

    背景:公司都追求系统的高可用性,这里不可用时间就是其中很重要的一个指标,为此在做系统功能升级迭代的过程中如何快速处理异常恢复正常功能极为重要.现在对新增模块的要求是都增加开关,方便快速关闭异常模块,但 ...

  7. 8-EasyNetQ之Send & Receive

    鉴于Publish/Subsrcibe和Request/Response模式是位置透明的,在这个方面,你不需要去指定消息的消费者具体所处的位置,Send/Receive模式是特别针对通过命名队列来设计 ...

  8. 获取字符串长度函数length()和hengthb()

    oracle获取字符串长度函数length()和hengthb() lengthb(string)计算string所占的字节长度:返回字符串的长度,单位是字节 length(string)计算stri ...

  9. oracle中函数和存储过程的区别和联系

    oracle中函数和存储过程的区别和联系 在oracle中,函数和存储过程是经常使用到的,他们的语法中有很多相似的地方,但也有自己的特点.刚学完函数和存储过程,下面来和大家分享一下自己总结的关于函数和 ...

  10. elmah数据库sql脚本

    /* 错误管理工具 SQL代码 */CREATE TABLE dbo.ELMAH_Error( ErrorId UNIQUEIDENTIFIER NOT NULL, Application NVARC ...