Recommender.recommend(uid, RECOMMENDER_NUM, rescorer);
Recommender.recommend(long userID,
int howMany, IDRescorer rescorer): 获得推荐结果,给userID推荐howMany个Item,凡rescorer中包含的Item都过滤掉。

其中源码中调用了以下方法 TopItems.getTopItems

TopItems类的.getTopItems

public static List<RecommendedItem> getTopItems(int howMany,
LongPrimitiveIterator possibleItemIDs,
IDRescorer rescorer,
Estimator<Long> estimator) throws TasteException {
Preconditions.checkArgument(possibleItemIDs != null, "argument is null");
Preconditions.checkArgument(estimator != null, "argument is null"); Queue<RecommendedItem> topItems = new PriorityQueue<RecommendedItem>(howMany + 1,
Collections.reverseOrder(ByValueRecommendedItemComparator.getInstance()));
boolean full = false;
double lowestTopValue = Double.NEGATIVE_INFINITY;
while (possibleItemIDs.hasNext()) {
long itemID = possibleItemIDs.next();
if (rescorer == null || !rescorer.isFiltered(itemID)) {
double preference;
try {
preference = estimator.estimate(itemID);
} catch (NoSuchItemException nsie) {
continue;
}
double rescoredPref = rescorer == null ? preference : rescorer.rescore(itemID, preference);
if (!Double.isNaN(rescoredPref) && (!full || rescoredPref > lowestTopValue)) {
topItems.add(new GenericRecommendedItem(itemID, (float) rescoredPref));
if (full) {
topItems.poll();
} else if (topItems.size() > howMany) {
full = true;
topItems.poll();
}
lowestTopValue = topItems.peek().getValue();
}
}
}
int size = topItems.size();
if (size == 0) {
return Collections.emptyList();
}
List<RecommendedItem> result = Lists.newArrayListWithCapacity(size);
result.addAll(topItems);
Collections.sort(result, ByValueRecommendedItemComparator.getInstance());
return result;
}

recommend(long userID, int howMany): 获得推荐结果,给userID推荐howMany个Item



estimatePreference(long userID, long itemID): 当打分为空,估计用户对物品的打分

setPreference(long userID, long itemID, float value): 赋值用户,物品,打分

removePreference(long userID, long itemID): 删除用户对物品的打分

getDataModel(): 提取推荐数据

版权声明:本文为博主原创文章,未经博主允许不得转载。

mahout过滤推荐结果 Recommender.recommend(long userID, int howMany, IDRescorer rescorer)的更多相关文章

  1. Mahout之(二)协同过滤推荐

    协同过滤 —— Collaborative Filtering 协同过滤简单来说就是根据目标用户的行为特征,为他发现一个兴趣相投.拥有共同经验的群体,然后根据群体的喜好来为目标用户过滤可能感兴趣的内容 ...

  2. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  3. SparkMLlib—协同过滤推荐算法,电影推荐系统,物品喜好推荐

    SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息( ...

  4. JVM调优(这里主要是针对优化基于分布式Mahout的推荐引擎)

    优化推荐系统的JVM关键参数 -Xmx 设定Java允许使用的最大堆空间.例如-Xmx512m表示堆空间上限为512MB -server 现代JVM有两个重要标志:-client和-server,分别 ...

  5. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  6. SimRank协同过滤推荐算法

    在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...

  7. mahout做推荐时uid,pid为string类型

    很幸运找到这篇文件,解了燃眉之急. http://blog.csdn.net/pan12jian/article/details/38703569 mahout做推荐的输入只能是long类型,但在某些 ...

  8. 基于MapReduce的(用户、物品、内容)的协同过滤推荐算法

    1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 ...

  9. 根据群ID和用户Id查询 + string QueryQunByUserIdAndQunId(int userId, int qunId) V1.0

    #region  根据群ID和用户Id查询 + string QueryQunByUserIdAndQunId(int userId, int qunId)  V1.0 /// <summary ...

随机推荐

  1. JS中如何获取<Select>中value和text的值

    原文地址:JS中如何获取<Select>中value和text的值 html代码: <select id = "city" onchange="chan ...

  2. 每天一个Linux命令(34)grep命令

          grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具 ...

  3. 数据库基本表创建 完整性约束 foreign Key

    理解以下几张表的内容,根据实际情况设计属性名.数据类型.及各种完整性约束(primary key.foreign key.not null.unique.check),用数据定义语言实现,然后设计实验 ...

  4. js琐碎知识点

    1.javascript发展史 javascript首先由Netscape设计,为改善浏览器用户体验,名为liveScript, 网景公司被sun公司收购,为了宣传改名为javascript 后来su ...

  5. P4844 LJJ爱数数

    题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits ...

  6. CSS3响应式侧边菜单

    在线演示 本地下载

  7. web框架详解之tornado 一 模板语言以及框架本质

    一.概要 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过 ...

  8. 剑指offer之 栈的压入、弹出序列

    题目描述:输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出序列.假设压入栈的所有数字均不相等.例如序列1/2/3/4/5是某栈的压栈序列,序列4/5/3/2/1是该压栈序 ...

  9. 算法(Algorithms)第4版 练习 2.2.11(2)

    关键代码: private static void sort(Comparable[] input, int lo, int hi) { if(lo >= hi)//just one entry ...

  10. CSS控制表格嵌套

    网页设计应用中,当我们不能完全放弃表格的使用时,为了达到预期的效果,不免要用到表格嵌套(特别是多层嵌套)方式来进行布局.可能很多同仁都遇到过这样的问题,为了达到显示效果要为每一个(每一层)的表格写不同 ...