Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 34934   Accepted: 12752

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
这题使用Bellman-Ford算法
 #include <iostream>
using namespace std;
struct farm {
int S;
int E;
int T;
} f[];
int main() {
int num;
int N, M, W;
cin >> num;
int F[];
for (int i = ; i < num; i++) {
cin >> N >> M >> W;
for (int j = ; j < N; j++) {
F[j] = ;
}
F[] = ;
for (int j = ; j < M; j++) {
int a, b, c;
cin >> a >> b >> c;
f[*j].S = a;
f[*j].E = b;
f[*j].T = c;
f[*j+].S = b;
f[*j+].E = a;
f[*j+].T = c; }
for (int j =* M; j < *M + W; j++) {
int a, b, c;
cin >> a >> b >> c;
f[j].S = a;
f[j].E = b;
f[j].T = - c;
}
for (int j = ; j < N-; j++) {
for (int k = ; k < *M + W; k++) {
if (F[f[k].E] > F[f[k].S] + f[k].T) {
F[f[k].E] = F[f[k].S] + f[k].T;
}
}
}
int flag = ;
for (int k = ; k < *M + W; k++) {
if (F[f[k].E] >F[f[k].S] + f[k].T) {
F[f[k].E] = F[f[k].S] + f[k].T;
flag=;
break;
}
}
if(flag){
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;
}
}
return ;
}

Wormholes - poj 3259 (Bellman-Ford算法)的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. (最短路 spfa)Wormholes -- poj -- 3259

    http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions ...

  4. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  5. Wormholes POJ 3259(SPFA判负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  6. poj 3259 bellman最短路推断有无负权回路

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36717   Accepted: 13438 Descr ...

  7. ShortestPath:Wormholes(POJ 3259)

    田里的虫洞 题目大意:就是这个农夫的田里有一些虫洞,田有很多个点,点与点之间会存在路,走过路需要时间,并且这些点存在虫洞,可以使农夫的时间退回到时间之前,问你农夫是否真的能回到时间之前? 读完题:这一 ...

  8. poj 3259(bellman最短路径)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 30169   Accepted: 10914 Descr ...

  9. kuangbin专题专题四 Wormholes POJ - 3259

    题目链接:https://vjudge.net/problem/POJ-3259 思路:求有无负环,起点随意选就可以,因为目的只是找出有没有负环,有了负环就可以让时间一直回退,那么一定能回到当初,这里 ...

随机推荐

  1. Java线程同步:synchronized锁住的是代码还是对象

    所以我们在用synchronized关键字的时候,能缩小代码段的范围就尽量缩小,能在代码段上加同步就不要再整个方法上加同步.这叫减小锁的粒度,使代码更大程度的并发.原因是基于以上的思想,锁的代码段太长 ...

  2. Combination Sum III - LeetCode

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  3. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  4. 【poj2155】【Matrix】二位树状数组

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34310873 Description Given ...

  5. [POI2006]Periods of Words

    题目大意: 给定一个长度为$n(n\leq10^6)$的字符串$S$,定义一个串$S$的最大周期为一个不为$S$的字符串$Q$,满足$Q$为$S$的前缀且$S$为$QQ$的前缀.求字符串$S$的每一个 ...

  6. iOS开发 Swift开发数独游戏(三) 选关界面

    一.选关界面涉及到的功能点 1)需要UITableView以及相应数据代理.协议的实现 2)读取plist文件并转化成模型 3)在单元格点击后进入数独游戏,涉及到把数据经segue在UIViewCon ...

  7. VMware给虚拟机绑定物理网卡

    前言: 桥接模式:就是使用真实的IP地址 NAT模式:使用以VMnet 8所指定的子网中分配的IP地址,在外网信息交互中不存在这样的IP. 仅主机模式:仅用于虚拟机与真机之间的信息交互. 操作步骤: ...

  8. po_文件格式[转]

    原文: http://cpp.ezbty.org/content/science_doc/po_%E6%96%87%E4%BB%B6%E6%A0%BC%E5%BC%8F 摘要:PO 是一种 GNU 定 ...

  9. sql-----STR 函数

    原文:sql-----STR 函数 sql-----STR 函数 STR 函数由数字数据转换来的字符数据. 语法 STR ( float_expression [ , length [ , decim ...

  10. Visio中汇总两个箭头

    RT,相似度和信任度矩阵融合,两个箭头,选中其中一个,可以选格式--线条--终点选无,或者在快捷那选线条.